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Abstract We study a class of one-dimensional classical fluids with penetrable particles inter-
acting through positive, purely repulsive, pair-potentials. Starting from some lower bounds
to the total potential energy, we draw results on the thermodynamic limit of the given model.

Keywords Exact results · One-dimensional fluids · Thermodynamic limit

1 Introduction

Recently we found evidence that a non pairwise-additive interaction fluid model for penetra-
ble classical particles living in one-dimension does not admit a well defined thermodynamics
[1], but can only exist in a zero pressure state.

We know that physical pairwise-additive models could also have the same thermodynamic
singularity. Whereas the Ruelle stability principle [2] tells us only that a fluid of N particles
with a total potential energy, VN , bounded from below, VN > NB with B a constant, cannot
have a divergent pressure, it does not tell us whether it can only have a zero pressure in
the thermodynamic limit. This happens for example for models with penetrable particles
interacting with a positive, purely repulsive, long-range pair-potential v.

We will consider some lower bounds to the total potential energy VN which will allow
us to prove some important results regarding the thermodynamic limit of the underlying
one-dimensional fluid model.
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One-Dimensional Fluids with Positive Potentials 1335

2 The Problem

The grand canonical partition function of a system of particles in the segment [0, L] whose
positions are labeled by xi with i = 1, 2, . . . , N , in thermal equilibrium at a reduced tem-
perature θ , is given by

� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1 e

− VN (x1,...,xN )

θ , (2.1)

where z > 0 is the activity. The total potential energy of the system is

VN (x1, . . . , xN ) =
∑

i< j

v(|xi − x j |) (2.2)

=
N−1∑

i=1

N∑

j=i+1

v(|xi − x j |),

where v(x) is the pair-potential. We will assume that v(x) ≤ v(0) = v0 < ∞ for all x , i.e.
penetrable particles. For v = 0 we have the ideal gas (id).

Since � > 1 we must have for the fluid pressure P

P

θ
= lim

L→∞
ln �

L
> 0, (2.3)

so the pressure cannot be negative. In addition we will assume that v(x) is a positive function,
v(x) > 0 for all x , then

P

θ
= lim

L→∞
ln �

L

< lim
L→∞

ln
[∑∞

N=0
(zL)N

N !
]

L
= z. (2.4)

So 0 < P < θ z.
Let us furthermore assume that v(x) has tails decaying to zero at large x and such that,

for all x in [0, L],

v(x) > v(L), (2.5)

with

lim
L→∞ v(L) = 0. (2.6)

Then we find

� <

∞∑

N=0

(zL)N

N ! e− v(L)N (N−1)
2θ , (2.7)
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1336 R. Fantoni

and for the pressure,

P

θ
= lim

L→∞
ln �

L

< lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e− v(L)N (N−1)
2θ

]

L
(2.8)

= lim
L→∞

ln

[∫ ∞
0 dy (zL)y/

√
v(L)

[y/√v(L)]! e
− y(y−√

v(L))
2θ

]
− ln[√v(L)]

L
,

where we introduced the new continuous variable y = N
√

v(L) to transform the series into
an integral over y. Clearly if we had limL→∞ v(L) = v∞ with v∞ > 0 a constant, we could
immediately conclude that the limit in Eq. (2.8) is zero (see Eq. (5.5)) and the fluid has a
singular thermodynamic limit. Since the pair-potential is defined always up to an additive
constant, in this case, in order to find a reasonable result, one needs to properly scale the
chemical potential as follows: ln(z) → ln(z) + v∞(N − 1)/2θ .

Let us now introduce the Inverse Power Law Model (IPLM-α), v(x) = v0/[(|x |/σ)α +1],
with v0, σ , and α three positive constants, and the Generalized Exponential Model (GEM-α),
v(x) = v0e−γ (|x |/σ)α , with γ a fourth positive constant. For the IPLM-α with α < 1 the limit
on the right hand side of Eq. (2.8) is equal to zero (see Eq. (5.15)) and the fluid can only exist
in its zero pressure state. For 1 ≤ α < 2 it is non-zero smaller than z. For α ≥ 2 it is equal to
z (see Eq. (5.14)), i.e. it has the ideal gas behavior. For the GEM-α the limit is also always
equal to z.

On the other hand we can obtain a more stringent upper bound to the pressure observing
that for models with a pair-potential with monotonically decaying tails, i.e. with v′(x) < 0
for all x or purely repulsive, like the ones we just introduced, the configuration of minimum
potential energy is approximately the one with all particles equally spaced on the segment,
so

min(VN ) = [1 + a(α, N , L)]
∑

i< j

v

[
( j − i)L

N − 1

]
(2.9)

= [1 + a(α, N , L)](N − 1)

N∑

k=1

v

[
kL

N − 1

]

> [1 + a(α, N , L)](N − 1)v

(
L

N − 1

)
.

For example we find, in Eq. (2.9), a(α, 3, L) = 0 and for N > 3 we generally have a < 0.
Moreover,

lim
α→∞ a = lim

L→∞ a = 0, (2.10)

lim
α→0

a = lim
L→0

a = 0. (2.11)

Clearly limN→0 a = 0 and we must also have

0 < lim
N→∞[1 + a(α, N , L)] ≤ 1. (2.12)

So a(α, N , L) remains finite for all α, L , and N since it must be a continuous function.
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One-Dimensional Fluids with Positive Potentials 1337

Then we will have

P

θ
< lim

L→∞

ln

[
∑∞

N=0
(zL)N

N ! e− [1+a] ∑
i< j v

[
( j−i)L
N−1

]

θ

]

L
. (2.13)

We want to study the limit on the right hand side

L = lim
L→∞

ln

[
∑∞

N=0
(zL)N

N ! e− [1+a] ∑
i< j v

[
( j−i)L
N−1

]

θ

]

L
. (2.14)

Now we observe that for finite L ,

lim
N→∞

L

N 2

∑

i< j

v

[
( j − i)L

(N − 1)

]
=

∫ L

0
dx v(x)

= b(α, L), (2.15)

where b(α, L) diverges at large L for the IPLM-α with α ≤ 1. Then the limit of Eq. (2.14)
can be easily found for the IPLM-α with α ≤ 1, as

L = lim
L→∞

ln

[∑∞
N=0

(zL)N

N ! e− [1+a]bL−1N2
θ

]

L
= 0. (2.16)

So we conclude that also the IPLM-α with α = 1 does not have a well defined thermodynamic
limit. A pair-potential such that limL→∞ b is a finite constant, is said to be short range.

Note that the GEM-α for α = 1 reduces to the Exponential Model (EM), for α = 2 to
the Gaussian Core Model (GCM), and taking the α → ∞ limit of either the GEM-α or the
IPLM-α,

lim
α→∞ v(x) =

{
v0 |x | < σ

0 |x | > σ
(2.17)

we find the Penetrable Rods Model (PRM). For the PRM the thermodynamics is well defined
as follows from the analytic solution of the Tonks gas [3] for the Hard Rods Model (HRM).
In fact we must have

�HRM < �PRM < �id = ezL . (2.18)

According to our analysis, the IPLM-α and the GEM-α are non-singular for α → ∞ and the
IPLM-α is singular for α ≤ 1.

Moreover as already noticed in Ref. [1] the GEM-α with γ ∝ L−α are singular as
immediately follows from Eq. (2.8) and Eq. (5.5).

3 External Potential

In order to regularize the models introduced in the previous section, the IPLM-α for α ≤ 1,
which have a long-range pair-potential, it is necessary to introduce a confining negative
external potential which will prevent the particles to “escape” to infinity on the line.
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1338 R. Fantoni

Then we will have

VN (x1, . . . , xN ) =
∑

i< j

v(|xi − x j |) + N
∑

i

φ(xi ) (3.1)

with φ the external potential such that φ(x) < −v0/2 for all x in [0, L]. So that we must
now have P/θ > ze−v0/2θ .

4 Thermodynamic Regularity

In this section we want to discuss about the thermodynamic regularity of the IPLM-α for
α > 1, which are short-range. We know that P < θ z. So we should look for a non-zero lower
bound to the pressure. We also know that the IPLM-∞ is equivalent to the PRM which is
regular. So we can assume the IPLM-α to remain regular in a neighborhood of α → ∞. The
property that v(x) ≤ v0 implies VN ≤ N (N − 1)v0/2 which in turn implies P ≥ 0 which is
not enough to say that P must be non-zero.

Even if it looks plausible to assume that short-range models should admit a regular thermo-
dynamic limit we are unable to find a general principle rigorously proving such an assumption.

5 A Particular Non Pairwise-Additive Model

In Ref. [1] we studied the fluid model with

VN =
∑

i< j

w(xi , x j ), (5.1)

w(xi , x j ) = v0

j−1∏

k=i

A(|xk − xk+1|), (5.2)

A(x) = v(x)/v0, (5.3)

where x1 ≤ x2 ≤ . . . ≤ xN . Proceeding as in Sect. 2 we may assume that for equally spaced
particles

VN � constant (N − 1)

N∑

k=1

[
A

(
L

N − 1

)]k
,

so that from the properties of the geometric series in the large N limit

N∑

k=1

[
A

(
L

N − 1

)]k
∼ 1 − [A(L/N )]N

1 − A(L/N )
, (5.4)

and choosing for v the GEM-α, this behaves as N for α > 1 as (1 − e−L)N/L for α = 1,
and as (N/L)α for α < 1. So from the limit in Eq. (5.5) we conclude immediately that the
model is thermodynamically singular for α > 1 with a zero pressure, in agreement with the
results of Ref. [1]. Nothing can be said for α ≤ 1. The case α = 1 reduces to the physical
pairwise additive model.
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6 Ensemble Equivalence

In this section we discuss the equivalence of the three thermodynamic ensembles of statistical
physics, i.e. the grand canonical, the canonical, and the microcanonical. The argument for
the equivalence can be found in any textbook on statistical physics, as for example in the
Course of Theoretical Physics of Landau and Lifshitz [4]. We briefly retrace the argument
below and in the next two subsections.

We divide a closed system, after a period of time long enough respect to its relaxation time,
in many microscopic parts and consider one in particular. We call ρ(q, p) = w(E(q, p))
the distribution function for such part, where q = (x1, x2, . . .) are the particles coordi-
nates and p = (p1, p2, . . .) their momenta. In order to obtain the probability W (E)dE
that the subsystem has an energy between E and E + dE we must multiply w(E) by
the number of states with energies in this interval. We call 	(E) the number of states
with energies less or equal to E . Then the required number of states between E and
E + dE can be written (d	(E)/dE)dE ∝ dqdp and the energy probability distribu-
tion is W (E) = (d	(E)/dE)w(E). With the normalization condition

∫
W (E)dE = 1.

The function W (E) has a well defined maximum in E = Ē and a typical width 
E
such that W (Ē)
E = 1 or w(Ē)
	 = 1, where 
	 = (d	(Ē)/dE)
E is the num-
ber of states corresponding to the energy interval 
E . This is also called the statistical
weight of the macroscopic state of the subsystem, and its logarithm S = ln 
	, is called
entropy of the subsystem. The microcanonical distribution function for the closed system
is dw ∝ δ(E − E0)

∏
i (d	i/dEi )dEi ∝ δ(E − E0)eS

∏
i dEi , where E0 is the constant

energy of the closed system and we used the fact that the various subsystems are statistically
independent so that 
	 = ∏

i 
	i and S = ∑
i Si . We know that the most probable values

of the energies Ei are the mean values Ēi . This means that S(E1, E2, . . .) must have its max-
imum when Ei = Ēi . But the Ēi are the energy values of the subsystems which corresponds
to the complete statistical equilibrium of the system. So we reach the important conclusion
that the entropy of the closed system, in a state of complete statistical equilibrium, has its
maximum value, for a given energy E0 of the closed system.

6.1 Canonical vs Microcanonical

Let us now come back to the problem of finding the distribution function of the subsystem,
i.e. of any small macroscopic part of the big closed system. We then apply the microcanonical
distribution to the whole system, dw ∝ δ(E + E ′ − E0)d	d	′, where E, d	 and E ′, d	′
refer to the subsystem and to the rest respectively, and E0 = E + E ′. Our aim is to find the
probability w(q, p) of a state of the system in such way for the subsystem be in a well defined
state (with energy E(q, p)), i.e. in a well defined macroscopic state. We then choose d	 = 1,
pose E = E(q, p) and integrate respect to 	′, w(q, p) ∝ ∫

δ(E(q, p) + E ′ − E0)d	′ ∝
(eS

′
)E ′=E0−E(q,p). We use the fact that since the subsystem is small then its energy E(q, p)

will be small respect to E0, S′(E0 − E(q, p)) ≈ S′(E0) − E(q, p)dS′(E0)/dE0. The
derivative of the entropy respect to the energy is just β = 1/θ where θ is the reduced
temperature of the closed system which corresponds with that of the subsystem in equilibrium.
Then we find w(q, p) ∝ e−βE(q,p) which is the well known canonical distribution.

6.2 Grand Canonical vs Canonical

We want now generalize the canonical distribution to a subsystem with a variable num-
ber of particles. Now the distribution function will depend both on the energy and on
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1340 R. Fantoni

the number of particles N . The energies E(q, p, N ) will be different for different val-
ues of N . The probability that the subsystem contains N particles and be in the state
(q, p) will be w(q, p, N ) ∝ eS

′(E0−E(q,p,N ),N0−N ). Let then expand S′ in powers of
E(q, p, N ) and N keeping just the linear terms, so that S′(E0 − E(q, p, N ), N0 − N ) ≈
S′(E0, N0) − βE(q, p, N ) + βμN , where the chemical potential μ and the temperature of
the subsystem and the rest are the same, since we require equilibrium. So we obtain for the
distribution function w(q, p, N ) ∝ eβ(μN−E(q,p,N )). We can define the activity as z = eβμ.
This is the grand canonical distribution we chose to use throughout our discussion.

6.3 On the Ensemble Equivalence in our Models

The ensemble equivalence may fail when approaching a phase transition when the fluctuations
become so large that the linear approximation used above fails [5,6]. This is not the case
for the models studied in the present work which do not admit a gas-liquid phase transition
since the pair-potential is lacking a negative part (even if we cannot exclude a liquid-solid
transition). All three distribution described above, the microcanonical, the canonical, and the
grand canonical are in principle suitable for determining the thermodynamic properties of
our models. The only difference from this point of view lies in the degree of mathematical
convenience. In proactive the microcanonical distribution is the least convenient and is never
used for this purpose. The grand canonical distribution is usually the most convenient. For
example the Ruelle stability principle [2] holds only in this ensemble. This justifies our choice
throughout the work.

7 Conclusions

For a one-dimensional fluid model we consider some lower bounds to the total potential
energy VN which allow us to prove some results regarding its thermodynamic limit. In
particular we study fluids of penetrable particles interacting with a positive purely repulsive
pair-potential with tails decaying to zero at infinite separations. We study two kinds of models:
The IPLM-α and the GEM-α. For the long-range models, i.e. the IPLM-α for α ≤ 1, the
fluid can only exist in its zero pressure state. For the short-range models we are not able to
draw any conclusion.

We find good evidence that a particular non pairwise-additive model already introduced
in a recent previous work [1] is thermodynamically singular.

Our results could give some insights to prove the thermodynamic limit of more complex
fluids such as the ones described in [7–11].

Appendix 1: Some Limits

We have

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N1+ε
]

L
=

⎧
⎪⎪⎨

⎪⎪⎩

z ε ≤ −1
l −1 < ε < 0
z/e ε = 0
0 ε > 0

(5.5)

123

Author's personal copy



One-Dimensional Fluids with Positive Potentials 1341

with z/e < l < z. For example to prove the last case ε > 0 we can observe that

(zL)N

N ! e−N1+ε = (zL/ed)N

N ! e−N (N ε−d) (5.6)

<
(zL/ed)N

N ! , for N > d1/ε. (5.7)

Then for any finite d > 0 we will find

0 < lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N1+ε
]

L
<

z

ed
. (5.8)

Since d can be chosen very large but finite, then the limit of Eq. (5.5) must be zero.
Also

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−N/L
]

L
= lim

L→∞ ze−1/L = z. (5.9)

And

∞∑

N=0

(zL)N

N ! e−(N/L)2
(5.10)

=
∞∑

N=0

(zL)N

N !
∞∑

k=0

(−)k
(N/L)2k

k! (5.11)

=
∞∑

k=0

(−)k
(z2)k

k!
∞∑

N=0

(zL)N−2k

N !/N 2k
L�σ−→ (5.12)

∞∑

k=0

(−)k
(z2)k

k!
∞∑

N=2k

(zL)N−2k

N !/N 2k = e−z2
ezL , (5.13)

so

lim
L→∞

ln
[∑∞

N=0
(zL)N

N ! e−(N/L)2
]

L
= lim

L→∞ z − z2/L = z. (5.14)

Proceeding as above we can also prove that for the IPLM-α with α > 2 and all the GEM-α
we must have P < θ z.

Moreover we have

0 <
ln

[∑∞
N=0

(zL)N

N ! e−v(L)N2
]

L

<
ln

[∑∞
N=0(zL)Ne−v(L)N2

]

L

=
ln

[
e[ln(zL)]2/4v(L)

∑∞
N=0 < e−v(L)[N−ln(zL)/2v(L)]2

]

L
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1342 R. Fantoni

<
ln

[
e[ln(zL)]2/4v(L)

∑∞
N=0 e

−v(L)N2
]

L

= [ln(zL)]2

4v(L)L
+

ln
[∫ ∞

0 dy e−y2
]

L
− ln[v(L)]

2L
. (5.15)

Then, since for the IPLM-α with α < 1 the limit of the last expression is zero, its pressure
must be zero as mentioned in the main text.
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