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Abstract Wereview someof the exactly solvable one dimensional continuumfluidmodels of
equilibrium classical statistical mechanics under the unified setting of functional integration
in one dimension. We make some further developments and remarks concerning fluids with
penetrable particles.We then apply our developments to the study of the Gaussian coremodel
for which we are unable to find a well defined thermodynamics.
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1 Introduction

The physics of one dimensional systems is simpler than that one of higher dimensional ones.
Specifically the free energy of an interacting gas, a fluid, has had an exact solution only in
one dimension. The apparent simplicity of restricting motion to one spatial dimension is well
known and has had much appeal. But what is the relation between the exactly soluble models
of the one dimensional world and the richer and puzzling problems of the three dimensional
one? A one dimensional gas was once thought to be incapable even of condensation. Later
with the introduction of infinite range forces it has been made to condense, but even so this
liquid can never freeze. What one finds is that these models are useful tests of approximate
mathematicalmethods, the solutions of thesemodels are surprisingly complex and interesting,
physical applications are often and unexpectedly discovered, and more importantly they
educate us to the need of rigorous and exact analysis with which one can have a better
definition of reality. The fact that particles can get around each other is responsible for much
of the structure of the ordinary world, and is also responsible for the difficulties which the
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mathematical physicist encounter in studying it. In one dimension we renounce to some of
the structure in favor of the possibility of obtaining an exact solution.

The importance of one dimensional physics also lies in the fact that a number ofmany-body
problems in higher dimensions can be accurately mapped into one dimensional problems.

One dimensional models with short range two particles forces do not have a phase tran-
sition at a non zero temperature [6].

In this work I will describe a way of simplifying the calculation of the grand canonical
partition function of an ensemble of classical particles living in a one dimensional world and
interacting with a given pair-potential v, originally described by Edwards and Lenard in their
paper [3] which I will call EL from now on. Using the notion of a general Gaussian random
process andKac’s theorem, they showhow it is possible to express the grand partition function
as a one dimensional integral of the fundamental solution of a given partial differential
equation. The kind of partial differential equation will be fixed by the kind of diffusion
equation satisfied by the Gaussian random process. In Sects. 2, 3, and 4 I will present EL’s
functional integration technique. In Sect. 5.2 I will show how, in EL, the properties of the
Wiener process are used to solve “Edwards’ model” or “Lenard’s model”. I will then show,
in Sect. 5.1, how one can use the properties of the Ornstein–Uhlenbeck process to solve
the “Kac-Baker’s model”, and, in Sect. 8, how the generalized Ornstein–Uhlenbeck process
can be used to solve models with a more general penetrable pair interaction potential. Even
though in EL is mentioned the generality of their technique they just apply it to the “Edwards’
model”. In Sect. 6 I show how EL propose to extract thermodynamical informations from
their treatment and in Sect. 7 I show, following EL, how it is possible to reduce the search of
the grand partition function, to a characteristic value problem, when the diffusion equation
is independent of time. In Sect. 8 I show how one has to renounce to this reduction since
the original partial differential equation is not separable anymore. In Sect. 8.1 I then apply
the theoretical framework of such section to the Gaussian core model. In particular I will
prove that this model is thermodynamically unstable in its attractive version (which is also
not H-stable) and I will find an approximate expression for the grand partition function of
the repulsive version (which clearly is H-stable) in terms of a triple series one of which is
alternating.

More recently [2] the functional integral technique of Edwards andLenard has been used to
solve the statistical mechanics of a one dimensional Coulomb gas with boundary interactions
as a one dimensional model for a colloidal and soap film.

I think that the success of the functional integration method described in this work to find
exact solutions of the equilibrium classical (non-quantum) statistical mechanics problem of
one dimensional fluids has certainly been one of themotivations for the popularity acquired by
functional integration after the pioneering developments of Marc Kac and Richard Feynman.
The link with the theory of stochastic processes is just a beautiful example of how many
different theoretical frameworks come together in the few exact solutions of classical many-
body problems.

2 The Problem

The problem is to simplify the calculation of the grand canonical partition function of a system
of particles in the segment [0, L] whose positions are labeled by xi with i = 1, 2, . . . , N , in
thermal equilibrium at a reduced temperature θ , namely,
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� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1 e

− VN (x1,...,xN )

θ . (1)

EL consider the total potential energy of the system to be,

VN (x1, . . . , xN ) =
N∑

i=1

N∑

j=1

w(xi , x j ), (2)

where w(xi , x j ) is a function of two variables depending on the pair-potential v(|xi − x j |)
and the kind of reservoir exchanging particles with the system.

The main idea of EL, is to rewrite the grand partition function as a functional average,

� =
〈
e
∫ L
0 dx ′ F(φ(x ′))

〉
(3)

=
〈 ∞∑

N=0

1

N !
∫ L

0
dxN · · ·

∫ L

0
dx1

N∏

i=1

F(φ(xi ))

〉
.

And then choose F(φ) = z exp(iσφ), to get,

� =
∞∑

N=0

zN

N !
∫ L

0
dxN · · ·

∫ L

0
dx1

〈
eiσ

∑N
i=1 φ(xi )

〉
, (4)

where in interchanging the average with the sum and the integrals they use the linearity of
the average. we haven’ t defined the average yet so we will do it next.

3 Averaging Over a General Gaussian Random Process

Ageneral Gaussian randomprocessφ(x) is defined by the postulate that for any finite number
of points x1, . . . , xN the joint probability density for φ(xk) in dφk (we will often make use
of the abbreviation φi ≡ φ(xi )) is of the form,

P(φ1, . . . , φN ) =
√
det B

(2π)N/2 e
− 1

2

∑N
k=1

∑N
l=1 Bklφkφl , (5)

where Bi j = Bi j (x1, . . . , xN ) are the elements of the positive definite matrix B.
Let αk be N arbitrary real numbers. Then,

〈
ei

∑N
i=1 αiφi

〉
= e− 1

2

∑N
k=1

∑N
l=1 Cklαkαl , (6)

where C = B−1.

Differentiating with respect to αk and αl (not excluding k = l) and then setting all α to zero,
one obtains,

〈φ(xk)φ(xl)〉 = Ckl = C(xk, xl), (7)

where C is a function of two variables only, called the covariance function. From equations
(6) and (7) follows that also Bi j = B(xi , x j ) is a function of just two variables. The covariance
completely characterizes the statistical nature of φ(x)
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Replacing all the α’s in Eq. (6) with σ and comparing (6) and (4) with (1) and (2) one
recognizes that,

C(x1, x2) = 2

θσ 2 w(x1, x2). (8)

This imposes a restriction to the systems that one can treat. Namely we need w to be positive
definite.

Why is all this useful is explained in the next section.

4 Kac’s Theorem

Consider a Markoffian process φ(x), i.e. one for which, given any increasing sequence of
“times” x0, x1, . . . , xn , with x0 ≤ x1 ≤ · · · ≤ xn , the probability density that φ(xk) is in dφk

(with k = 0, 1, . . . , n) is the product,

P
(
φ1, . . . , φn

) =
∫ ∞

−∞

n∏

k=1

P
(
φk, xk |φk−1, xk−1

)
R(φ0, x0)dφ0, (9)

where P
(
φ1, x1|φ0, x0

)
is the conditional probability that φ(x1) is in an element dφ1 around

φ1 given that φ(x0) = φ0 and R(φ, x) is the initial probability distribution for the process.1

Both the conditional probabilities and the initial distribution are assumed to be normalized
to unity over the interval φ ∈ [−∞,+∞],

∫ ∞

−∞
dφ1 P

(
φ1, x1|φ0, x0

) =
∫ ∞

−∞
dφ R(φ, x) = 1. (10)

Any quantity which is an expression involving φ(x) is a random variable whose average
value may be determined using the probability (9).

One is interested in averages of the form,

W (x, x0) =
〈
e
∫ x
x0

dx ′F(φ(x ′),x ′)〉 (11)

= 1 +
∞∑

n=1

1

n!
∫ x

x0
dxn

∫ x

x0
dxn−1 · · ·

∫ x

x0
dx1 〈F(φn, xn) · · · F(φ1, x1)〉

= 1 +
∞∑

n=1

∫ x

x0
dxn

∫ xn

x0
dxn−1 · · ·

∫ x2

x0
dx1 〈F(φn, xn) · · · F(φ1, x1)〉 .

Kac’s theorem takes advantage of the Markoffian property (9) to relate to each other the
successive terms of this series by an integral-recursion formula. It can be seen by inspection
that,

1 Equation (9) defines what is often called a Wiener measure in the space of continuous functions φ(x).
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W (x, x0) =
∫ ∞

−∞
dφ Q

(
φ, x|φ0, x0

)
, (12)

Q =
∞∑

n=0

Qn,

Q0
(
φ, x|φ0, x0

) =
∫ ∞

−∞
dφ0 P

(
φ, x|φ0, x0

)
R(φ0, x0)

Qn
(
φ, x|φ0, x0

) =
∫ x

x0
dx ′

∫ ∞

−∞
dφ′ P

(
φ, x |φ′, x ′)F

(
φ′, x ′)Qn−1

(
φ′, x ′|φ0, x0

)

Then one can write the following integral equation for Q,

Q
(
φ, x|φ0, x0

) = Q0 +
∞∑

n=1

Qn =
∫

dφ0 PR +
∞∑

n=1

∫
dx ′

∫
dφ′ PFQn−1

=
∫ ∞

−∞
dφ0 P

(
φ, x|φ0, x0

)
R(φ0, x0) (13)

+
∫ x

x0
dx ′

∫ ∞

−∞
dφ′ P

(
φ, x |φ′, x ′)F

(
φ′, x ′)Q

(
φ′, x ′|φ0, x0

)
.

This is the main result of Kac’s theorem.
Now assuming that the stochastic process φ(x) satisfies a forward Fokker–Planck equa-

tion,

∂

∂x
P

(
φ, x|φ0, x0

) = L(φ, x)P
(
φ, x|φ0, x0

)
(14)

P(φ, x0|φ0, x0) = δ(φ − φ0) initial condition

it immediately follows from the integral formula (13), that Q satisfies,

∂

∂x
Q

(
φ, x|φ0, x0

) = [L(φ, x) + F(φ, x)
]
Q

(
φ, x|φ0, x0

)
(15)

Q
(
φ, x0|φ0, x0

) = R(φ, x0) initial condition

If we now further assume φ(x) to be a Gaussian process (so that Eq. (9) is of the form
(5)) then we can put together the result of the previous section (8) and Kac’s theorem, to say
that,

� = W (L , 0) =
∫ ∞

−∞
dφ Q

(
φ, L|0, 0) , (16)

where Q = Q
(
φ, x|φ0, x0

)
is the solution of the partial differential equation (15) with

F(φ, x) = F(φ) = z exp(iσφ). This is the simplification found by EL.
Note the following points:

– This certainly is a simplification from a computational point of view and establishes
a bridge between non-equilibrium statistical mechanics and the theory of stochastic
processes and equilibrium statistical mechanics in one dimension.

– When the operator L is independent of “time” (we keep calling x time because it
comes natural from the notion of random process. In the present context though x is
the position of a particle along his one dimensional world) then both P

(
φ, x|φ0, x0

)
and

Q
(
φ, x|φ0, x0

)
depend only on |x − x0| since F does not depend explicitly on x .
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– For a non-stationary random process φ(x) it is often possible to choose a delta function
as initial distribution, i.e. R(φ, x0) = δ(φ − φ0), where φ0 = φ(x0). In this case Q is
the fundamental solution of the partial differential Eq. (15).

– For a non-stationary random process the covariance function C(x1, x2) = 〈φ(x1)φ(x2)〉
is not a function of |x2 − x1| alone. The identification of the covariance with the pair-
potential v demands that the process be stationary because the pair-potential is a function
of the difference of the two position variables. But in some cases (due for example to the
presence of the reservoir) w may differ from v (see Sect. 5.2).

As a final remark, in EL is stressed the importance of the Markoffian nature of the process.
They observe that the concept of a Markoffian process involves the idea of a succession in
“time” and this is meaningless when there is more then one independent variable. So it seems
to be hard to extend the technique just described even to a two dimensional system.

In the following section we will apply the functional integration technique just described
to some concrete example.

5 Examples

Note that due to the Markoffian nature of the stochastic process the following two properties
should be required for x0 ≤ x1 ≤ x2,

R(φ1, x1) =
∫ ∞

−∞
dφ0 P

(
φ1, x1|φ0, x0

)
R(φ0, x0), (17)

P
(
φ2, x2|φ0, x0

) =
∫ ∞

−∞
dφ1 P

(
φ2, x2|φ1, x1

)
P

(
φ1, x1|φ0, x0

)
. (18)

Let us see now how all this works for two well known Markoffian, Gaussian stochastic
processes.

5.1 The Ornstein–Uhlenbeck Process

The Ornstein–Uhlenbeck process is a stationary process defined as follows,

R(φ0, x0) = e− φ20
2√

2π
, (19)

P
(
φ, x|φ0, x0

) = e− (φ−φ0e
−γ�x)

2

2S(�x)√
2π S(�x)

, (20)

with �x = |x − x0|,
S(�x) = 1 − e−2γ�x ,

where γ is the inverse of the characteristic time constant of the process, i.e. a positive real
number.

The covariance for this process is,

C(x1, x2) = e−γ |x1−x2|. (21)
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The Fokker–Planck equation satisfied by the process is the Smoluchowski diffusion equa-
tion for an harmonic oscillator,

L(φ) = γ

(
∂2

∂φ2 + ∂

∂φ
φ

)
. (22)

So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) = θσ 2

2
e−γ |x1−x2|. (23)

Adding a hard-core part to this long range potential and making it attractive by choosing
σ pure imaginary, gives the so called “Kac-Baker model”. Yang and Lee showed that the
presence of the hard core part is sufficient to ensure the existence of the thermodynamic
potential for the infinite system (L → ∞). This was calculated exactly by Kac who also
proved that the model has no phase transitions (because of the infinite range of the potential,
L. Van Hove’s proof is not applicable here). Later Baker showed that if one sets,

σ = i

√
α0γ

θ
, (24)

(so that the integral of the potential is independent of γ ) and then takes the limit γ → 0 after
the limit L → ∞, then a phase transition of the classical Van der Waals type is obtained. A
model with exponential repulsive pair-potential (exactly like the one in (23)) was studied by
D. S. Newman, who concluded that it did not show phase transitions in the long range limit
γ → 0 [8].

5.2 The Wiener Process

We follow EL and introduce theWiener process. It is a non-stationary process defined by (if
x ≥ x0 > 0),

R(φ0, x0) = e
− φ20

4Dx0√
4πDx0

(25)

P
(
φ, x|φ0, x0

) = e− �φ2

4D�x√
4πD�x

, (26)

with �x = x − x0,

�φ = φ − φ0,

where D is the diffusion constant of the Brownian process, i.e. a positive real number.
The covariance for this process is,

C(x1, x2) = 2Dmin(x1, x2). (27)

Although this process cannot be differentiated it can be seen as the integral, φ(x) =∫ x
0 ds ξ(s), of the Gaussian white noise process, ξ(x), defined by 〈ξ(x)〉 = 0 and

〈ξ(x1)ξ(x0)〉 = ζ 2δ(x1 − x0) and the attribute Gaussian implies that all cumulants higher
than of second order vanish. One just needs to set 2D = ζ 2.

The Fokker–Planck equation satisfied by the process is the Einstein diffusion equation,

L(φ) = D
∂2

∂φ2 . (28)
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So this process can be used to describe a system of particles whose potential energy is,

w(x1, x2) = Dθσ 2 min(x1, x2). (29)

It was S. F. Edwards, see EL, who first realized that this is a Coulomb system: electrons of
charge q living in the segment [0, L] are in contact with an infinite reservoir (in the region
x < 0, say). The reservoir exchanges particles with the system of electrons giving rise to the
statistical fluctuations in particle number. Take the system plus reservoir electrically neutral
as a whole and imagine the system containing N electrons. Then there is a total charge −Nq
in the reservoir. Gauss theorem then tells that in the region x ≥ 0 there is a constant electric
field of magnitude 2πNq , due to the presence of the reservoir. Now choosing,

D = 2π

θ
, (30)

σ = q, (31)

one can rewrite the total potential energy of the system as,

VN = 2πq2
N∑

k=1

N∑

l=1

min(xk, xl)

= 2πq2
N∑

k=1

N∑

l=1

[
−|xk − xl |

2
+ xk + xl

2

]

= −2πq2
∑

k<l

|xk − xl | + 2πq2
N∑

k=1

N∑

l=1

xl

= −2πq2
∑

k<l

|xk − xl | + 2πNq2
N∑

l=1

xl . (32)

Which is readily recognized as the expected result for the “Edwards’model”.We are assuming
that the line is the realworld inwhich each charge lives. So that also its field lines cannot escape
from the line. Then the electric potential of each charge is the solution of d2ψ(x)/dx2 =
−4πδ(x), i.e. ψ(x) = −2π |x |.

Note that due to the presence of the neutralizing reservoir, w is not just a function of
|xi − x j | and consequently the random process is not just a stationary one as in the Kac-
Baker example.

In this case Edwards has not been able to answer in a definite way to the problem of
continuity of the thermodynamic functions.

6 Thermodynamics

Following EL, we want now comment briefly on the relevance of all this from the point of
view of the thermodynamics of the system of particles. Given the grand canonical partition
function � = �(z, L , θ) the equation of state follows from eliminating z between the two
following equations,

P

θ
= 1

L
ln�(z, L , θ), (33)

n = z
∂

∂z

1

L
ln�(z, L , θ). (34)
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where P is the pressure and n the number density of particles. Sometimes one talks about
chemical potential μ (of the one-component system), instead of z. The two are related by,

z =
(

mθ

2π h̄2

)1/2

eμ/θ > 0, (35)

where m is the mass of the particles. All the other thermodynamic functions can be obtained
from the internal energy,

U (N , L , S) = − ∂

∂(1/θ)
ln�(z, L , θ) + 1

2
Nθ, (36)

where S is the entropy of the system. Or alternatively from the Helmholtz free energy,

A(N , L , θ) = μN − θ ln�(z, L , θ). (37)

It is often useful to simplify the problem by studying just the asymptotic behavior of �

in the infinite system limit L → ∞. This usually allows the recognition of eventual phase
transitions (as in the Yang and Lee theory and L. Van Hove theorem) as singularities in the
equation of state. The equation of state for the infinite system becomes then,

⎧
⎪⎪⎨

⎪⎪⎩

P

θ
= �(z, v, θ) = lim

L→∞

[
1

L
ln�(z, L , θ)

]
,

n = 1

v
= lim

L→∞

[
z

∂

∂z

1

L
ln�(z, L , θ)

]
,

(38)

where the limit may not be freely interchanged with the differentiation.

7 Characteristic Value Problem

Both the examples described have the common feature thatL is independent of time x . Under
this circumstance the problem of calculating the grand canonical partition function � may
be simplified even further, as shown in EL.

Letting φ → φ/σ , the coefficient function F(φ) in Eq. (15) is periodic with period 2π . It
is then possible to reduce the problem (15) to the characteristic value problem of an ordinary
differential operator on a finite interval of the independent variable φ. Let,

Q̃
(
φ, x

) =
∞∑

n=−∞
Q

(
φ + 2πn, x |0, 0). (39)

This function is the periodic solution of the partial differential Eq. (15) and for x = 0 it
reduces to,

Q̃
(
φ, 0

) =
∞∑

n=−∞
R
(
φ + 2πn, 0

)
. (40)

For the “Kac-Baker model” one finds for example

Q̃
(
φ, 0

) = θ3

(
iπφ/σ 2, e−2π2/σ 2

)
e−φ2/2σ 2

/
√
2πσ 2, (41)

where θ3 is an elliptical theta function [1], and for the “Edwards’ model” Q̃
(
φ, 0

) =∑∞
n=−∞ δ(φ + 2πn). So, for this latter case, Q̃ is the periodic fundamental solution of

(15). It then follows that,
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� =
∫ π

−π

dφ Q̃(φ, L). (42)

Since F and L do not depend on x , in solving (15) for Q̃, one may use the method of
separation of variables. This leads to the characteristic value problem,

[L(φ) + F(φ)] y(φ) = λy(φ), (43)

y(φ + 2π) = y(φ).

Then one looks for a complete orthonormal set of eigenfunctions ym with relative eigenvalues
λm (m = 0, 1, 2, . . .),

∫ π

−π

dφ ym(φ)ym′(φ) = δm,m′ . (44)

The expansion of Q̃ in terms of these functions is,

Q̃(φ, x) =
∞∑

m=0

eλmx Bm ym(φ), (45)

Bm =
∫ π

−π

dφ Q̃(φ, 0)ym(φ). (46)

For example Bm = ym(0) for the “Edwards’ model”. The grand partition function becomes,

�(L) =
∞∑

m=0

Ame
λm L , (47)

Am = Bm

∫ π

−π

dφ ym(φ). (48)

The λm and the ym depends parametrically on z which enters into the definition of F(φ).
Moreover since F(φ) = F∗(−φ) the λm are either real or occur in complex conjugate pairs.

Now assume that among the sequence of eigenvalue λm there is one λ0 that is real and is
bigger than the real part of all the others then the following simplification holds,

�(L → ∞) ∼ A0eλ0L . (49)

The equation of state for the infinite system then becomes,

P = θλ0(z), (50)

n = lim
L→∞

[
z

∂

∂z

(
ln A0(z)

L
+ λ0(z)

)]

= z
∂

∂z
λ0(z). (51)

For example for the ideal gas, σ → 0 and λ0(z) = az, with a a constant.
Let us summarize the characteristic value problem for the examples described. Denoting

with a dash a first derivative respect to φ (. . .′ ≡ d . . . /dφ) we have:

(i) “Kac-Baker model” repulsive [8],

γ
[
σ 2y′′ + (φy)′

] + zeiφ y = λy, (52)
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(ii) “Edwards’ model” [3],

2πq2

θ
y′′ + zeiφ y = λy, (53)

this is a one component plasma.
(iii) “Lenard’s model” [7],

2πq2

θ
y′′ + 2z cos(φ)y = λy, (54)

this is a two component plasma system of two kinds of particles with charges ±q and
the corresponding values of z that by symmetry may be assumed equal without loss of
generality.

In all cases y(φ) is a function of period 2π (for the attractive Kac-Baker model the
periodicity is lost but the characteristic value problem is still valid).

Unfortunately there is no simple way to solve explicitly Eq. (52) for the Kac-Baker model.
Nonetheless it is apparent the existence of the thermodynamic limit for the repulsive model,
as was proved by Newman [9].

In the Edwards’ model the presence of the neutralizing reservoir is responsible (the poten-
tial energy of interaction between the particles and the reservoir being proportional to +x)
for the charges all of the same sign to accumulate at the origin resulting in a system with zero
density and pressure in accordwith the fact that Eq. (53) admits solutions in terms ofmodified
Bessel functions of the first kind I±i

√
2θλ/πq2

(
√
2θ zeiφ/πq2)which form a complete set for

λ = −m2 with m = 0, 1, 2, . . ., so that λ0 = 0.
In the Lenard’s model the solutions of Eq. (54) is in terms of even and odd Mathieu func-

tions with characteristic value a = −2λθ/πq2, parameter q = −2θ z/πq2, and argument
φ/2. According to Floquet’s theorem, any Mathieu function of argument φ can be written in
the form eirφ f (φ), where f has period 2π and r is theMathieu characteristic exponent. For
nonzero q theMathieu functions are only periodic for certain values of a. SuchMathieu char-
acteristic values are given by ar = A(r, q) with r integer or rational and A(0, q) ≤ A(r, q)

for all r, q . Then we will have λ0 = −(πq2/2θ)A(0,−2θ z/πq2). In Fig. 1 we show the
equation of state of the Lenard model at various temperatures θ for q = 1.

We are then led to conclude that this system does not admit any phase transition, conden-
sation (gas–liquid) or freezing (liquid–solid).

8 General Penetrable Pair-Potential

In the examples described we started from known stochastic processes to find which physical
model they may be able to describe. Actually one wants to do the reverse: given a physical
model, i.e. given w (a positive definite function (8)), determine the stochastic process that
allows the desired simplification for the grand canonical partition function. It turns out that
this is quite easily accomplished when w is a function of the inter particles distance alone.
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Fig. 1 The equation of state for the Lenard’s model at various temperatures θ for q = 1

For this purpose it is useful to reconsider the Ornstein–Uhlenbeck process in a more
general way. Consider the following stationary stochastic process,

R(φ0, x0) = e− φ20
2√

2π
, (55)

P
(
φ, x|φ0, x0

) = e− (φ−φ0 A(�x))2

2S(�x)√
2π S(�x)

, (56)

with �x = |x − x0|,
S(�x) = 1 − A2(�x),

where the last definition assures the validity of theMarkoffian property (17). Clearly, in order
to satisfy the Markoffian property (18) we need to require A(x)A(y) = A(x + y) which is
only satisfied by choosing A as an exponential as in the Ornstein–Uhlenbeck process. Here
we willingly violate this second property and choose A as an arbitrary function. In order to
have P

(
φ, x0|φ0, x0

) = δ
(
φ − φ0

)
we must also require that limx→0 A(x) = 1.

The covariance for this process is,

C(x1, x2) = 2

θσ 2 w(x1, x2) = A(|x1 − x2|). (57)

It can be readily verified that the transition density of this process satisfies the following
forward Fokker–Planck equation,

L(φ, x) = − Ȧ

A

(
∂2

∂φ2 + ∂

∂φ
φ

)
, (58)

where the dot denotes differentiation with respect to time ( ˙. . . ≡ d . . . /dx). All the properties
of Sect. 4 continue to hold. All this allows for example to simplify the thermodynamics of a
system of particles interacting with a pair-potential,

v = θσ 2

4
A, (59)
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with v(0) = v0 = θσ 2/4, i.e. penetrable particles.
Unfortunately in this case we cannot use the method of separation of variables described

in Sect. 7 since L is time dependent.
In the more general case one has to deal with w’s which are not functions of the pair-

potential alone, as happened in the case of Edwards’ model. For example one may be
interested in modifying Edwards’ model for the case of a Coulomb system moving but
not living in [0, L] with field lines allowed to exit the segment and interacting with the full
three dimensional pair-potential v(x) = 1/

√
x2 + ε2, with ε a small positive quantity so

that v0 = 1/ε or σ = 2/
√

εθ . A neutralizing uniform background in this case gives rise
to quadratic terms making even the one-component system stable. To obtain the purely one
dimensional case it is necessary to take the ε → 0 limit at the end of the analysis of the
quasi one dimensional case. This problem has been solved by Baxter [8] who developed a
method for finding the partition function when the pair-potential satisfies a linear differential
equation with constant coefficients. His method still leads to an eigenvalue problem but does
not employ functional averaging.

Introducing the function B2(x) = −2d ln A(x)/dx one can then say that according to
Ito or Stratonovich calculus [5] the process defined by Eqs. (55), (56) satisfies the following
stochastic differential equation,

φ̇(x) = − B2(x)

2
φ(x) + B(x)ξ(x), (60)

where ξ(x) is Gaussian white noise with ζ = 1. The ξ(x) can be generated on a computer
as pseudo random numbers on a large interval ξ ∈ [−a, a] with a big enough.

8.1 Example: The Gaussian Core Model

For example we want to simplify the model fluid with v(x) = v0e−γ x2 , γ > 0, the so
called Gaussian core model. In this case we have A(x) = e−γ x2 and B2(x) = 4γ x . For this
model we expect that the attractive, σ 2 = 4v0/θ < 0, case is thermodynamically unstable in
agreement with the fact that the particles will tend to collapse at a same point since the system
is not H-stable in the sense of Ruelle [13]. On the other hand we do not know anything yet
about the repulsive, σ 2 > 0, case, which is H-stable and therefore we must have P/θ < z.
For example, we know that there cannot be any condensation but an interesting question is
whether there can be freezing [4].

The problem (15) becomes

∂

∂x
Q̃(φ, x) =

[
2γ x

(
σ 2 ∂2

∂φ2 + ∂

∂φ
φ

)
+ zeiφ

]
× Q̃(φ, x), (61)

Q̃(φ, 0) = θ3

(
iπφ/σ 2, e−2π2/σ 2

) e− φ2

2σ2√
2πσ 2

, (62)

with Q̃(φ + 2π, x) = Q̃(φ, x). This is a non-separable partial differential equation. Again
the grand canonical partition function is given by Eq. (42),

� =
∫ π

−π

dφ Q̃(φ, L).

Clearly, approximating F(φ) ≈ z or, equivalently, setting σ → 0, we get the ideal gas
behavior. In fact the solution to Eq. (61) is, in this simple case,
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Q(φ, x |0, 0) = P(φ, x |0, 0)ezx , since ∂P/∂x = LP . So that from Eqs. (16) and (10)
immediately follows � = ezL .

In order to make some progress towards the solution of the full Eq. (61) we defineL ≡ xR
andH(x) = xR+F . SinceH at different times do not commute we use the following Dyson
series

Q
(
φ, x |0, 0) = U(x, 0)R(φ, 0), (63)

U(x, x0) = 1 +
∞∑

n=1

∫ x

x0
dxn

∫ xn

x0
dxn−1 · · ·

∫ x2

x0
dx1 H(xn) · · ·H(x1),

Where R is given by Eq. (55). So that we find � = 1 + ∑∞
n=1 cn with

cn =
∫ L

0
dxn

∫ xn

0
dxn−1 · · ·

∫ x2

0
dx1

∫ ∞

−∞
dφ H(xn) · · ·H(x1)R(φ, 0). (64)

Solving for cn we easily find cn = ∑n
k=1 an,k with

an,k = e−k2σ 2/2 fn,k(σ
2)γ n−k L2n−k zk

k! , (65)

with fn,n = 1, fn,1 = 0 for n > 1 and fn,k(ψ) a polynomial of degree n − k in ψ beginning
with the monomial of degree one and the others of alternating signs. So

� = 1 +
∞∑

n=1

n∑

k=1

an,k = 1 +
∞∑

k=1

∞∑

n=k

an,k

= 1 +
∞∑

k=1

e−k2σ 2/2(zL)k

k!
∞∑

n=k

fn,k(σ
2)(γ L2)n−k

= 1 +
∞∑

k=1

(zL)k

k! hk(σ
2, γ L2) = �(zL , σ 2, γ L2), (66)

where we defined

hk(ψ, η) ≡ e−k2ψ/2gk(ψ, η), (67)

gk(ψ, η) ≡
∞∑

m=0

fk+m,k(ψ)ηm . (68)

First of all notice that, if the thermodynamic limit exists, we must have P =
O(z2/γ, σ 2)zθ with O a given function of two variables such that limσ→0 O(a, σ 2) = 1.
Note that when there is no interaction between the particles v0 → 0 and/or at very high
temperature θ → ∞, then σ → 0 and we end up with an ideal gas.

Then, if it was hk = 1 we would immediately find the ideal gas behavior. On the other
hand if it was gk = 1 we would find an unstable system for v0 < 0 and a stable system with
P = 0 = n for v0 > 0 since

1

L
ln

[ ∞∑

k=0

e−k2σ 2/2(zL)k

k!

]
→

{
0 σ 2 > 0 for L → ∞
∞ σ 2 < 0 for any L

. (69)

We then need to find the true hk or gk . We already know that g1 = 1. What can we say
about gk(ψ, η) for k > 1? By inspection of the first few terms of the Dyson series we find
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that gk(ψ, η) = 1+ ∑∞
m=1 fk+m,k(ψ)ηm with fk+m,k(ψ) = ∑m

i=1(−1)m+i dk+m,k,i ψ
i and

dk+m,k,i some positive coefficients. So that of course hk(0, η) = 1 for all k, as it should.
Now we can write

gk(ψ, η) = 1 +
∞∑

m=1

m∑

i=1

dk+m,k,i (−ψ)i (−η)m

= 1 +
∞∑

i=1

(−ψ)i
∞∑

m=i

dk+m,k,i (−η)m

= 1 +
∞∑

i=1

lk,i (η)(−ψ)i , (70)

where we defined

lk,i (η) ≡
∞∑

m=i

dk+m,k,i (−η)m . (71)

We start looking for the coefficients for i = 1. By inspection of the first seven n we find, for
2 ≤ k ≤ n − 1,

dn,k,1 = 2n
k!
n!bn,k, (72)

bn,k

bn,k+1
= (k − 1)Rn−k+2, (73)

bn,n−1 =
(

n

n − 3

)
1

2n
. (74)

So that

bn,k = bn,n−1
(n − 3)!
(k − 2)!

n−2∏

q=k

Rn−q+2, (75)

and

dn,k,1 = k(k − 1)

3! rn−k, (76)

with, for 2 ≤ k ≤ n − 2,

rn−k =
n−k+2∏

p=4

Rp, (77)

r2 = 4/(2 · 2 + 1)!!,
r3 = 8 · 3/4(2 · 3 + 1)!!,
r4 = 16 · 3/5(2 · 4 + 1)!!,
r5 = 32 · 3/6(2 · 5 + 1)!!,

and so on. We can then guess that

rm = 2m3

(2m + 1)!!(m + 1)
. (78)
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Then we can easily re-sum the series of Eq. (71) to say that

lk,1(η) = k(k − 1) × 2F2
(
{1, 1}, {3/2, 2},−x

)
− 1

2
, (79)

with 2F2 a hyper-geometric function. We also find limη→∞ lk,1(η) = −k(k − 1)/2. What
about lk,i (η) for i > 1?

Their determination is quite laborious but let us suppose first that we had found for lk,i ,

lk,i (η) = 1

i !
(
k2

2

)i ( −η

1 + η

)i

. (80)

Then it would follow

hk(ψ, η) = e− k2
2 ψe

k2
2

ψη
1+η = e− k2

2
ψ

1+η , (81)

and for the partition function we would find

�L(z) =
∞∑

k=0

(zL)k

k! e
− k2

2
σ2

1+γ L2 . (82)

We could then immediately say that the attractive, σ 2 < 0, case would be thermodynamically
unstable since the series in Eq. (82) would be not summable, whereas the repulsive, σ 2 > 0,
case would be stable. In this latter case O = limL→∞ ln�L/L would be finite and the system
would admit a well defined thermodynamic limit without phase transitions. The equation of
state would be

P

θ
= lim

L→∞
ln�L(z)

L
= O(z/

√
γ , σ 2)

√
γ , (83)

n = lim
L→∞ z

�L

(
ze

− σ2

1+γ L2

)

�L(z)
e
− σ2

2(1+γ L2) = z, (84)

so that P = O(n2/γ, v0/θ)nθ and for small n one would have P ≈ nθ .
In order to make some progress towards the exact solution we can then write dn,k,i =

dn,k,1En,k,i andnote that En,k,1 = 1 andby inspection E2+i,2,i = 1.Now ifwehad En,k,i = 1
for all n, k, i then we would get

lk,i (η) = k(k − 1)2i−1(−η)i

(i + 1)(2i + 1)!! × 2F2
({1, 1 + i}, {3/2 + i, 2 + i},−η

)
. (85)

We can then use the following limit

lim
η→∞2F2

({1, 1 + i}, {3/2 + i, 2 + i},−η
)
η = (i + 1)(2i + 1)

2i
, (86)

to say that

lim
η→∞

lk,i (η)

(−η)i−1 = −k(k − 1)2i−2

i(2i − 1)!! . (87)

Since, according to Eqs. (87) and (70), in the large η limit,

gk(ψ, η) → 1 + k(k − 1)ψ × 2F2
({1, 1}, {3/2, 2}, ψη

)
/2, (88)
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for the repulsive, σ 2 > 0, system we would find

P

θ
= lim

L→∞
ln

[
2F2

({1, 1}, {3/2, 2}, σ 2γ L2
)]

L

=
⎧
⎨

⎩

∞ σ 2γ independent of L
α σ 2γ L = α independent of L
0 σ 2γ L2 independent of L

(89)

and n = 0. So that in the first two cases we would violate the H-stability condition according
to which P/θ < z. This is a signal that our approximation is too brute.

In the appendix we report the first few exact En,k,i . Even if we found it too hard to guess
the full analytic expression from the first few of them, the results of the appendix can be used
to refine our analysis.

Our final expression for the partition function is

� =
∞∑

k=0

e−σ 2k2/2(zL)k

k!

(
1 + k(k − 1)

∞∑

i=1

(σ 2γ L2)i×
∞∑

l=0

(−γ L2)l
Ek+l+i,k,i2l+i

2(l + i + 1)(2(l + i) + 1)!!
)

(90)

{
< ezL σ 2 > 0,
= ∞ σ 2 < 0,

(91)

Note that the dependence of Ek+m,k,i on k is crucial because otherwise we could immediately
conclude that the pressurewould be independent from z. And this fact, added to theH-stability
condition P/θ < z, would be enough to say that the repulsive Gaussian core model only
admits a zero pressure zero density state. Note also that the dependence of En,k,i on i is also
crucial because otherwise for σ = 1 the argument of the first two series would be symmetric
under exchange of i and l which would mean that the two models with γ > 0 and with γ < 0
would have the same thermodynamics which is clearly absurd [14].

The first alternating series has very slow numerical convergence as L grows. We then
found it difficult to extract even a numerical equation of state. Nonetheless we found that the
triple series is convergent at least in the high temperature regime, 0 < σ 2 � 1.

From the H-stability condition (90) we find that for any L and k > 1 we must have

−1

k(k − 1)

≤
∞∑

i=1

(σ 2γ L2)i
∞∑

l=0

(−γ L2)l
Ek+l+i,k,i2l+i

2(l + i + 1)(2(l + i) + 1)!!

=
∞∑

m=1

(−γ L2)m
2m

∑m
i=1(−σ 2)i Ek+m,k,i

2(m + 1)(2m + 1)!! = Gk(σ
2, γ L2)

<
eσ 2k2/2 − 1

k(k − 1)
. (92)
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Then, we find
∑m

i=1(−σ 2)i Ek+m,k,i = −σ 2 + Fm,k(σ
2) for m ≥ 2 with

Fm,k(σ
2) = ∑m

i=2(−σ 2)i Ek+m,k,i . In the large L limit we then have, for γ > 0,

Gk(σ
2, γ L2) → σ 2/2 + lim

L→∞ Hk(σ
2, γ L2), (93)

Hk(σ
2, γ L2) =

∞∑

m=2

(−γ L2)m
2m−1Fm,k(σ

2)

(m + 1)(2m + 1)!!
= (γ L2)2Mk(σ

2, γ L2), (94)

Mk(σ
2, γ L2) =

∞∑

m=0

(−γ L2)m
2m+1Fm+2,k(σ

2)

(m + 3)(2m + 5)!! .

In view of the H-stability upper bound of Eq. (92), Mk should be decaying as 1/L4 or faster,
at large L . If it decays faster, then Gk is independent of k and the only possible state is a
zero pressure one. If it decays as 1/L4, from the results of the appendix we can say that it
does not increase with k and again the zero pressure state is the only one possible in the
thermodynamic limit. So, in the end, we were unable to find a regular thermodynamics even
for the repulsive stable case with positive γ . Everything is pointing towards a zero pressure
state in the thermodynamic limit. This would be in agreement with the observation that as
θ → 0 the only configurations contributing to the integral in Eq. (1) are the ones with
minimum VN − μN which are those where the particles are infinitely spaced one another
with n → 0. Moreover the result of Penrose and Ruelle [10,12] on the convergence radius
of the Mayer series for stable and tempered pair-potentials would not be violated since for
any finite L our triple series is convergent in the high temperature regime 0 < σ 2 � 1.

8.2 Observation

Now, we can observe that the same conclusion would be expected for the easier Kac-Baker
model, v(x) = v0e−γ |x |, γ > 0, for which the structure of the solution for the partition
function reads

� = 1 +
∞∑

k=1

e−k2σ 2/2(zL)k

k!
∞∑

n=k

fn,k(σ
2)(γ L)n−k

= �(zL , σ 2, γ L), (95)

with some given polynomials fn,k . Again we can definitely say that the attractive model is
thermodynamically unstable and that the repulsive one is thermodynamically stable but only
admits the P = 0 = n state for γ ∝ L−1. For the rest, also for this case we expect a situation
similar to the one of the Gaussian core model. Should this behavior be generally expected
for any positive, purely repulsive, penetrable pair-potential with non-compact2support? This
will be studied in a forthcoming work.

2 It is in fact clear that for a positive repulsive pair-potential with compact support we would have a partition
function bounded below by the partition function of the hard-rods fluid which being a nearest neighbor fluid
has a well defined thermodynamics with an exact analytical solution [11].
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9 Conclusions

We reviewed, under the unified setting of functional integration in one dimension, some of the
exactly solvable one dimensional continuum fluid models of equilibrium classical statistical
mechanics. Following the original idea of Marc Kac we write the partition function of each
model as a path integral over particularMarkoffian, Gaussian stochastic processes. Following
the idea of Sam Edwards we further reduce the thermodynamic problem for such fluids to the
solution of a second order ordinary differential equation, the characteristic value problem.

In the work of Edwards and Lenard [3] it is also given a detailed analysis of how one can
extend this method to get solutions for the pair- and higher orders static correlation functions.

We propose a generalization of themethodwhich allows to treat other models with a rather
generic pair-potential of interaction between the constituent penetrable particles of the fluid.
The characteristic value problem of Edwards cannot be used anymore but the simplification
of Kac remains valid. We apply this further developments to the simple case of the Gaussian
core fluidmodel for whichwe prove that the attractive system is thermodynamically unstable,
in agreement with the fact that it is not H-stable in the sense of Ruelle [13], and find an
approximate expression for the exact partition function in terms of a triple series one of
which is alternating. We were unable to find a well defined thermodynamics even for the
repulsive system. Everything suggest that the only admitted state in the thermodynamic limit
is the zero pressure one. If this conclusion was confirmed it would mean that a Monte Carlo
simulation carried on the Gaussian core model would just observe finite size effects.
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mechanics held at Urbana in 1999 in the Loomis laboratory, stimulated the study of the EL paper as a
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Appendix: The Coefficients En,k,i

In Table 1 we list the first exact En,k,i coefficients for i = 2, 3, 4 and the first seven n.

Table 1 Exact En,k,i for
i = 2, 3, 4.

En,k,2 n = 7 n = 6 n = 5 n = 4

k = 2 15 7 3 1

k = 3 5105/352 79/12 33/14

k = 4 211/18 243/56

k = 5 389/56

En,k,3 n = 7 n = 6 n = 5

k = 2 25 6 1

k = 3 4923/176 31/6

k = 4 17

En,k,4 n = 7 n = 6

k = 2 10 1

k = 3 965/88
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Table 1 continued En,k,2 n = 7 n = 6 n = 5 n = 4

k = 2 15 7 3 1

k = 3 14.5 6.6 2.4

k = 4 11.7 4.3

k = 5 6.9

En,k,3 n = 7 n = 6 n = 5

k = 2 25 6 1

k = 3 28.0 5.2

k = 4 17

En,k,4 n = 7 n = 6

k = 2 10 1

k = 3 11.0

From the table we can see how there is a very weak dependence on k. So we can on a
first ground assume that En,k,i ≈ En,2,i = en−i,i for all k. Moreover the entries of the table
satisfy the following recurrence relation

e2,i = 1, (96)

e j,2 = 2 j−1 − 1, (97)

e j,i = ie j−1,i + e j,i−1, (98)

with j = n− i . So that introducing the generating function ϕ(x, i) = ∑∞
j=2 e j,i x

j we easily
find

ϕ(x, 2) = x2/(x − 1)(2x − 1), (99)

ϕ(x, i)/x = iϕ(x, i) + ϕ(x, i − 1)/x, (100)

with solution

ϕ(x, i) = x3

(x − 1)(−x)i (2 − 1/x)i−1
, (101)

with (a)i = a(a+1) · · · (a+ i −1) = �(a+ i)/�(a) the Pochhammer symbol. The desired
coefficient e j,i is the j th coefficient in the series expansion of ϕ(x, i) around x = 0.

More precisely we can then write En,k,i = hn,k,i en−i,i with hn,2,i = 1 and E2+i,2,i = 1.
We can also observe that En,k,i tends to decrease with k at fixed n and i .
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