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Abstract Weconsider an ionicfluidmadewith two species ofmobile particles carrying either
a positive or a negative charge. We derive a sum rule for the fourth moment of equilibrium
charge correlations. Our method relies on the study of the system response to the potential
created by a weak external charge distribution with slow spatial variations. The induced
particle densities, and the resulting induced charge density, are then computed within density
functional theory, where the free energy is expanded in powers of the density gradients.
The comparison with the predictions of linear response theory provides a thermodynamical
expression for the fourth moment of charge correlations, which involves the isothermal
compressibility as well as suitably defined partial compressibilities. The familiar Stillinger–
Lovett condition is also recovered as a by-product of our method, suggesting that the fourth
moment sum rule should hold in any conducting phase. This is explicitly checked in the low
density regime, within the Abe–Meeron diagrammatical expansions. Beyond its own interest,
the fourth-moment sum rule should be useful for both analyzing and understanding recently
observed behaviours near the ionic critical point.

Keywords Two-component plasmas · Sum rules ·Charge correlations ·Critical behaviours

1 Introduction

Sum rules have been playing an important role in the study of charged systems for many
years. In general, a sum rule provides a relation between microscopic correlations on the one
hand, and macroscopic or universal quantities on the other hand. For charged systems, sum
rules often express screening properties, so they shed light on the fundamental mechanisms
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at work. Furthermore, they also provide useful constraints for approximate theories. Sum
rules have been derived for a large variety of charged systems, including classical, quantum
and relativistic plasmas, while they concern both static and dynamic properties in the bulk or
near interfaces. For instance, let us mention the last work [1] by Bernard Jancovici, devoted
to the study of the time-displaced charge correlations of a relativistic one-component plasma
coupled to radiation. Other examples can be found in two reviews [2,3].

One of the most well-known sum rules for classical ionic fluids was derived long ago
by Stillinger and Lovett [4], who shown that the second moment of equilibrium charge
correlations is given by a simple universal expression, valid in any plasma phase and inde-
pendent of the microscopic details of the considered models. That second-moment sum rule
expresses the perfect screening of weak external charges. A few years later, Vieillefosse and
Hansen [5] derived another sum rule for the fourth moment of the charges correlations of the
one-component plasma (OCP), where identical positively charged particles move in a rigid
uniform neutralizing background. That fourthmoment is expressed in terms of the isothermal
compressibility. Soon after thatwork, therewas an attempt [6] to extend such a fourth-moment
sum rule to the two-component plasma (TCP) where both positive and negative charges are
mobile. The corresponding expression for the fourth moment involves ill-defined thermody-
namic quantities, so its validity remained quite doubtful. A more convincing approach for
that TCP was introduced by van Beijeren and Felderhof [7]. However, the thermodynamical
quantities involved in the expression of the fourthmoment are defined through the application
of suitable external potentials which are not explicited, while the derivation itself is rather
tough. In fact, a similar expression was obtained later by Suttorp and van Wonderen [8] for
a multicomponent ionic mixture (MIM), where all mobile charges have the same sign and
interact via the pure Coulomb potential, while a rigid uniform background of opposite charge
ensures overall neutrality. Then, all involved thermodynamic quantities become well defined
within the considered MIM.

The main goal of the present paper is to derive a fourth moment sum rule for a general
TCP, namely to express such moment in terms of suitably defined thermodynamical quan-
tities, similarly to the formulae derived for the OCP [5] or the MIM [8,9]. Our strategy,
inspired by Jancovici’s style, consists in studying the response of the TCP to a weak external
charge distribution with a plane wave structure. In the long wavelength limit, the induced
local particle densities vary on macroscopic scales. This allows us to compute the response
within some hydrostatic-like approach which involves local equilibrium states with arbitrary
densities. As a crucial point, a proper definition of equilibrium homogeneous non-neutral
states with arbitrary densities naturally emerges within the framework of density functional
theory (DFT). Then the induced charge density is expressed in terms of well-behaved ther-
modynamical quantities of an auxiliary system, which is nothing but a TCP immersed in a
rigid uniform neutralizing background. Comparing that expression with the general linear
response formula, we obtain the required fourth moment sum rule for the charge correlations
of the genuine unperturbed TCP.

According to the previous strategy, we first introduce in Sect. 2 the various systems
which intervene in our analysis. Of course, we start by defining the TCP, where a short-range
regularization of the pure Coulomb interactions is essential for avoiding the classical collapse
between oppositely charged particles. Two examples of such regularizations are provided,
associated with either soft or hard spheres. After recalling that the TCP is always neutral
and homogeneous in the absence of any external action on the particles, we show how the
application of a suitable external potential produces homogeneous non-neutral states. This
leads to the introduction of an auxiliary system, the TCP immersed in a charged background,
for which equilibrium states are well defined for any set of particle densities.
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The general framework of DFT is exposed in Sect. 3, where we provide the fundamental
DFT equation which relates particle densities to the applied external potentials. The central
object in that relation is the free energy, which is a functional of particle densities. For slow
spatial variations, that free energy functional can be expanded in powers of the gradients of
particle densities, where the local ingredients are equilibrium quantities of the above homo-
geneous auxiliary system. Let us mention that the idea of using density-gradient expansions
was introduced a long time ago by van der Waals [10] for studying capillarity.

In Sect. 4, within DFT, we compute the induced particle densities of the TCP submitted
to a weak external charge distribution with a plane wave structure and wavenumber k. The
resulting induced charge density exactly cancels the external charge distribution in the long
wawelength limit k → 0, as expected from perfect screening arguments. Furthermore, its
amplitude at the order k2 included only depends on thermodynamical quantities of the aux-
iliary system. In other words the square-gradient corrections in the free energy functional,
which intervene in the corresponding amplitudes of each induced particle density at this
order, do not contribute anymore when forming the charge density thanks to cancellations.
Then, by comparing this exact expression of the induced charge density obtained by DFT
with the linear response formula, we obtain the required sum rule for the fourth moment of
the charges correlations of the homogeneous neutral TCP. The corresponding thermodynam-
ical expression of that fourth moment involves not only the isothermal compressibility of the
TCP, but also partial compressibilities specific to the auxiliary system. We briefly discuss the
content of previous approaches [6,7], and we show how the known results for the OCP [5]
and the MIM [9] can be easily recovered within our general method.

It is worthy to check explicitly the fourth moment sum rule for specific models where
exact calculations can be carried out for both microscopic and thermodynamical quantities.
In Sect. 5, we consider a model of charged soft spheres in the low density limit at fixed
temperature. Within the Abe–Meeron resummations of the familiar Mayer diagrammatics
for particle correlations, we first compute the lowest order terms in the density expansion
of the fourth moment of charge correlations, namely the terms of order 1/ρ, 1/ρ1/2, ρ ln ρ

and ρ0 in the density ρ. Abe–Meeron resummed diagrammatics also provide the low density
expansion of the thermodynamical quantities involved in the fourth moment sum rule : the
corresponding expansion of the thermodynamical expression of the fourth moment exactly
coincides with the previous purely microscopic calculation up to order ρ0 included. That
remarkable agreement holds for any values of themicroscopic parameters defining themodel.

In Sect. 6, we provide some additional comments about the derivation itself and its under-
lying assumptions, as well as extensions to three and more component systems. Beyond its
own conceptual interest, we also discuss a possible use of the fourth moment sum rule for a
better understanding of the conductor or dielectric nature of the critical point of the liquid-
gas transition of an ionic fluid. It turns out that recent Monte Carlo simulations [11] strongly
suggest that the fourth moment of charge correlations diverge when approaching the critical
point, in a way close to that of the isothermal compressibility. That observation was one of
the motivations for the present work.

2 The Systems of Interest

2.1 Examples of Two-Component Plasmas

We consider a two-component classical plasma (TCP) made with two species α = 1, 2
of mobile particles carrying positive or negative charges, let us say q1 = Z1q > 0 and
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q2 = −Z2q < 0 with Z1 and Z2 positive integers. The corresponding Hamiltonian for a
total number of particles N = N1 + N2 reads

HN1,N2 =
N∑

i=1

p2i
2mαi

+ 1

2

∑

i �= j

uαiα j (ri , r j ) (1)

where αi = 1, 2 is the species of particle i. The two-body potential uαiα j (ri , r j ) only depends
on the relative distance r = |ri − r j |, and it includes some short-range regularization of the
Coulomb interaction, which is crucial for avoiding the classical collapse between oppositely
charged particles. A first soft regularization is embedded in the simple expression

uαγ (r) = qαqγ

r

[
1 − exp(−r/dαγ )

]
(2)

which remains finite at r = 0. The lengths dαγ control the exponential decay at large distances
of the short-range part of the two-body potential.

A second regularization amounts to introduce hard cores, namely

uαγ (r) = ∞ for r < σαγ and uαγ (r) = qαqγ

r
for r > σαγ . (3)

The corresponding TCP of charged hard spheres is suitable for describing many ionic mix-
tures, where the hard-core interaction mimics the effective repulsion between the electronic
clouds of two ions. If σ11 and σ22 can be viewed as the effective diameters of the ions, the
characteristic crossed lengths σ12 = σ21 differ in general from the average (σ11 + σ22)/2
which would arise if particles really were billiard balls. This so-called non-additivity can
be understood by noticing that the σαγ ’s are the typical ranges of the repulsions between
electronic clouds for which no pure geometrical considerations apply. The simplest version
of that general asymmetric TCP is the celebrated Restrictive Primitive Model, which is fully
symmetric with respect to the charges and the hard-core diameters, namely |q1| = |q2| = q
and σ11 = σ22 = σ12 = σ .

Other short-range regularizations of the Coulomb interaction can be introduced. The cor-
responding most general TCP will be denoted S. The following derivations are valid for any
S, beyond the above two examples.

2.2 The Homogeneous Neutral TCP

Let us first consider that S is enclosed in a box with volume �, while no external potential is
applied to the particles. At equilibrium, all statistical ensembles should become equivalent
in the thermodynamic limit which is also assumed to exist. Furthermore, in a fluid phase,
the bulk is overall neutral, that is the homogeneous particle densities ρ1 and ρ2 far from the
boundaries satisfy the local neutrality relation

q1ρ1 + q2ρ2 = 0 . (4)

Strictly speaking, these remarkable results have been only proved in the Debye regime,
namely at sufficiently high temperatures and sufficiently low densities, for rather general
regularized interactions and rational ratios q2/q1 [12]. Moreover, there exists a proof for
charge symmetric systems, i.e. q1 = −q2, for any values of the thermodynamic parame-
ters [13]. Let us also mention the beautiful proof for the quantum version with pure Coulomb
interactions by Lieb and Lebowitz [14]. According to all those rigorous results, it can be rea-
sonably expected that both the existence of the thermodynamic limit and the local neutrality
are valid for any classical TCP in the whole fluid phase.
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Important features of the various statistical ensembles are associated with the neutrality
relation (4). In the grand-canonical ensemble, the intensive thermodynamical parameters are
the inverse temperature β and the chemical potentials μα . It turns out that only the linear
combination μ = (Z2μ1 + Z1μ2)/(Z1 + Z2) is relevant and entirely determines the total
particle density ρ = ρ1 + ρ2. This can be readily understood within the following simple
heuristic arguments. Let us introduce, for any arbitrary configuration, the total number of
particles N = N1+N2 and the corresponding total charge Q = Mq withM = Z1N1−Z2N2.
According to the decomposition

μ1N1 + μ2N2 = μN + νM (5)

with ν = (μ1−μ2)/(Z1+Z2), we see thatμ controls the grand-canonical average< N >GC

of the total particle number, while ν determines the grand-canonical average< Q >GC= q <

M >GC of the net charge. In the thermodynamic limit (TL), � → ∞ with β and μα fixed,
the contributions of non-neutral configurations with Q proportional to the volume� become
negligible, because the corresponding Boltzmann factors involve a positive self-electrostatic
energy which diverges faster than � itself. Accordingly, the total charge density in the bulk

q1ρ1 + q2ρ2 = lim
TL

< Q >GC /� (6)

vanishes for any given ν, while the total particle density ρ = ρ1 + ρ2 is indeed entirely
determined by μ and β.

In the canonical ensemble, the TL is defined by letting � → ∞ and Nα → ∞, keeping
β and Nα/� fixed. All excess charges go to the the boundaries in the TL, and the remaining
bulk is always neutral. The bulk thermodynamic quantities and bulk distribution functions
computed within the canonical ensemble then become identical to their grand canonical
counterparts. In particular the free-energy density in thermal units of this homogeneous
neutral phase, which only depends on ρ and β = 1/(kBT ), can be computed through

f (ρ, β) = lim
TL

(
β

∑

α

μα < Nα >GC − ln	

)
/� , (7)

where	 is the grand-canonical partition function. This provides the familiar thermodynamic
identity

f (ρ, β) = β(ρμ − P) , (8)

with the pressure P = limTL kBT�−1 ln	. Since the pressure is also given by the thermo-
dynamic relation

βP = ρ
∂ f

∂ρ
− f (ρ, β) , (9)

we infer

βμ = ∂ f

∂ρ
, (10)

which is analogous to the standard thermodynamical identity expressing the chemical poten-
tial for a one-component system with short-range interactions.
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2.3 The Homogeneous Non-neutral TCP in an External Potential

In order to obtain a non-neutral homogeneous state of S with arbitrary uniform densities, one
must apply a non-vanishing external potential on the particles. Let us introduce the electrosta-
tic potential ϕB(r) created by an uniform charge density cB, and the corresponding external
potentialsUB

α (r) = qαϕB(r) seen by the particles. At equilibrium, the total electrostatic field
inside the bulk should identically vanish. According to that simple electrostatic argument,
the induced particle densities should be homogeneous, while the resulting charge density
q1ρ1 + q2ρ2 carried by the particles should cancel the external charge density cB.

Interestingly, the above quite plausible scenario has been exactly demonstrated within a
solvable model by Jancovici [15]. He considered identical point particles in two dimensions
with pure Coulomb interactions, which then take a logarithmic form. In addition the particles
are submitted to a confining parabolic potential, associated with a fixed external uniform
charge density. For a special value of the temperature, all equilibrium distribution functions
can be exactly computed. The resulting particle density is indeed uniform in the bulk and such
that the total charge density vanishes. Furthermore, all higher-order distribution functions in
the bulk become translationally invariant in the TL.

2.4 The Auxiliary System in a Neutralizing Rigid Background

As suggested by the previous considerations, and for further purposes, it is convenient to
introduce an auxiliary system S∗, where now the mobile positive and negative charges of the
TCP are immersed in an uniform rigid backgroundwith charge density cB. The corresponding
Hamiltonian of S∗ reads

H∗
N1,N2

=
N∑

i=1

p2i
2mαi

+ 1

2

∑

i �= j

uαiα j (ri , r j ) +
N∑

i=1

∫

�

dr
qαi cB

|ri − r| + 1

2

∫

�2
drdr′ c2B

|r′ − r| ,

(11)

when the system is enclosed in a box with volume�. That system can be viewed as an exten-
sion of the well-known One-Component Plasma (OCP) made of identical charged particles
immersed in a neutralizing rigid background. Now, there are two species which are immersed
in the background, similarly to the case of a Binary Ionic Mixture (BIM). However, notice
that here we do need a short-range regularization of the Coulomb interaction in order to avoid
the collapse between oppositely charged particles, while the BIM can be defined with pure
1/r Coulomb interactions because all mobile charges have the same sign.

Like theOCP or theBIM, the systemS∗ should have awell-behaved thermodynamic limit,
which is now takenwith a fixed background charge density cB. Now, in the bulk region, which
is again electrically neutral, the homogeneous particle densities satisfy the neutrality relation

q1ρ1 + q2ρ2 + cB = 0 . (12)

The corresponding free-energy density f ∗ of the homogeneous neutral system now depends
on β, cB and one particle density. Equivalently, f ∗ depends on β and on the two particle
densities ρ1 and ρ2. For any given set (ρ1, ρ2), the charge background density is adjusted in
order to satisfy the neutrality relation (12). This defines the function f ∗(ρ1, ρ2, β), where
now ρ1 and ρ2 are independent variables. That procedure is analogous to that which defines
the free-energy density fOCP(ρ, β) of the OCP for any value of the particle density ρ where
a suitable background charge density always ensure overall neutrality.
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The homogeneous neutral TCP can be viewed as a particular realization of S∗ for densities
(ρ1, ρ2) satisfying the neutrality relation (4) in the absence of any background. For such
neutral sets, each particle density can be expressed in terms of the total particle number
density as

ρ1 = Z2

Z1 + Z2
ρ and ρ2 = Z1

Z1 + Z2
ρ . (13)

The thermodynamic quantities of the homogeneous neutral TCP can then be inferred from
their counterparts of S∗ for the neutral set of densities (13). For instance, the free-energy
density of the homogeneous neutral TCP is given by

f (ρ, β) = f ∗(Z2ρ/(Z1 + Z2), Z1ρ/(Z1 + Z2), β) . (14)

For further purposes, it is useful to consider the isothermal compressibility defined by

χT = − lim
TL

�−1 ∂�

∂P
=

[
ρ

∂P

∂ρ

]−1

= β

[
ρ2 ∂2 f

∂ρ2

]−1

, (15)

where all partial derivatives are taken at fixed β. According to identity (14), χT can be recast
as

χT = β(Z1 + Z2)
2

ρ2

[
Z2
2
∂2 f ∗

∂ρ2
1

+ Z2
1
∂2 f ∗

∂ρ2
2

+ 2Z1Z2
∂2 f ∗

∂ρ1∂ρ2

]−1

, (16)

where the second order partial derivatives of f ∗ are evaluated at the neutral set (13). Even-
tually, all distribution functions of the homogeneous neutral TCP obviously reduce to those
of S∗ for that set of densities.

3 Density Functional Theory

3.1 Grand-Canonical Description

Now we consider a general inhomogeneous state of S, where each particle of species α is
submitted to an external potential Uα(r). We define the inhomogeneous fugacity of each
species by

zα(r) = exp [β(μα −Uα(r))]
(
2πλ2α

)3/2 . (17)

where λα = (βh̄2/mα)1/2 is the de Broglie thermal wavelength of species α. The classical
grand-canonical partition function of S enclosed in a box with volume � reads

	 =
∞∑

N1,N2=0

1

N1!N2!
∫ N∏

i=1

dri zαi (ri ) exp(−βVN1,N2) , (18)

where VN1,N2 is the potential part of theHamiltonian (1). The inhomogeneous particle density
ρα(r) can be expressed as a functional derivative of 	 with respect to zα(r), namely

ρα(r) = zα(r)
δ ln	

δzα(r)
(19)
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while parameters � and β are kept fixed. The free-energy F in thermal units of S is given
by the Legendre transformation

F =
∑

α

∫

�

dr ρα(r) β(μα −Uα(r)) − ln	 . (20)

The grand-partition function 	, as well as the free-energy F , can be considered as func-
tionals of either zα(r) or ρα(r). The functional derivative ofF with respect to ρα(r) is readily
computed as

δF
δρα(r)

= β(μα −Uα(r)) (21)

where we have used identity (19) as well as standard calculation rules for functional dif-
ferentiation. The relation (21) will play a key role in the following. The density profiles
ρα(r) for each given sets (μα − Uα(r)) can be determined from that relation if one knows
the functional dependence of F with respect to the inhomogeneous densities : this is the
strategy of density functional theories (DFT). However, the main difficulty of DFT is that
the free-energy functional is not exactly known, except for hard rods in one dimension [16].
In general, approximate forms are used. Here, we will use exact asymptotic expansions for
densities with infinitely slow spatial variations.

3.2 Homogeneous Systems

As argued in the previous Section, homogeneous states of S with arbitrary densities (ρ1, ρ2)

are obtained by applying the external potentials

UB
α (r) = qαϕB(r) = qα

∫

�

dr′ cB
|r′ − r| (22)

with the external charge density cB = −(q1ρ1 + q2ρ2). If we introduce the potential part
V ∗
N1,N2

of the Hamiltonian (11) for the auxiliary system S∗ with background charge density
cB, we can rewrite

VN1,N2 +
N∑

i=1

UB
αi

(ri ) = V ∗
N1,N2

− WB (23)

where

WB = 1

2

∫

�2
dr dr′ c2B

|r′ − r| (24)

is the self-electrostatic energy of the background charge density cB. Inserting relation (23)
into the general expression (18), we obtain for the grand-partition function of S submitted
to the external potentials UB

α (r),

	
{
μ1 −UB

1 (·), μ2 −UB
2 (·)} = 	∗{μ1, μ2} exp(βWB) , (25)

where 	∗ is the grand-partition function S∗ for the same chemical potentials μα and a
background charge density cB, without any applied external potentials, i.e.Uα(r) = 0. In the
derivation of identity (25), we have used that WB is a pure constant which does not depend
on the particle degrees of freedom. This also implies that all the grand-canonical averages
for S submitted to UB

α (r) are identical to those for S∗. In particular, both particle densities
are identical, so the particle densities of S submitted to UB

α (r) are indeed homogeneous and
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they are merely related to cB via the neutrality condition (12) valid for S∗. Moreover, all
particle correlations of both systems are identical.

If we insert expression (25) of 	 into definition (20) of the free energy of S submitted to
UB

α (r), we obtain in the TL

F{ρ1, ρ2} − β

2

∫

�2
drdr′ (q1ρ1 + q2ρ2)2

|r′ − r| ∼ F∗{ρ1, ρ2} (26)

while cB has also been replaced by −(q1ρ1 + q2ρ2) thanks to the neutrality condition (12).
Thus, if we define, in general, the reduced free energy Fred of S by subtracting to F the
self-electrostatic energy of the charge distribution (q1ρ1(r) + q2ρ2(r)), namely

Fred = F − β

2

∫

�2
drdr′ (q1ρ1(r) + q2ρ2(r))(q1ρ1(r′) + q2ρ2(r′))

|r′ − r| , (27)

we find the remarkable identity

Fred{ρ1, ρ2} ∼ F∗{ρ1, ρ2} , (28)

which can be rewritten for the corresponding free-energy densities as

fred(ρ1, ρ2, β) = f ∗(ρ1, ρ2, β) . (29)

Notice that this subtraction from the free-energy functional of the self-electrostatic energy
was first introduced by Hohenberg and Kohn [17] for studying the quantum electron gas.

3.3 Density Functional Expansions for Almost Homogeneous Systems

For states ofS with slow spatial variations of the particle densities, the corresponding reduced
free-energyFred{ρ1(·), ρ2(·)} can be expanded in powers of the gradients of ρ1(r) and ρ2(r).
The leading term in that systematic expansion is purely local and reduces to

∫
dr f ∗(ρ1(r), ρ2(r), β) , (30)

where we have used identity (29) for the reduced free-energy density of an homogeneous
system. The first correction, the so-called square-gradient term, reads [18,19]

1

12

∑

α,γ

∫
dr M∗

αγ (ρ1(r), ρ2(r), β)∇ρα(r) · ∇ργ (r) , (31)

whereM∗
αγ (ρ1, ρ2, β) is the secondmoment of the short-rangepart of the direct two-body cor-

relations, namely cSRαγ (r) = cαγ (r)+βqαqγ /r , for S∗ with homogeneous densities (ρ1, ρ2).
Similarly to the emergence of the free-energy density of S∗ in the purely local term (30), the
direct correlations of S∗ arise in the square-gradient term because all the respective distribu-
tion functions of S∗ and S with the same homogeneous densities are identical as established
above. Notice that for systems with short-range interactions, the square-gradient expansion
of the free energy F involves second moments of the direct correlations themselves. Here,
thanks to the subtraction (27) of the electrostatic self-energy, the square-gradient expansion of
the reduced free energy Fred involves second moments of the short-range part cSRαγ (r), which
do converge thanks to the large-distance behaviour cαγ (r) ∼ −βqαqγ /r when r → ∞.

The second correction to the purely local contribution (30) involves fourth-order spatial
derivatives of the densities, and it has been explicitly computed in Ref. [20]. The correspond-
ing local ingredients are fourth moments of two-, three- and four-body direct correlations of

123



A. Alastuey, R. Fantoni

S∗ with homogeneous densities. Higher-order corrections would exhibit similar structures
with well-behaved local ingredients defined for the same system.

4 Linear Response to a Weak Slowly-Varying External Charge
Distribution

We start with S in the absence of any applied external potential, namely that realization
of S is nothing but the homogeneous neutral TCP. In a second step, let us introduce an
external charge distribution cext(r) = qext exp(ik · r), with an infinitesimal amplitude qext.
Our aim here is to determine the induced charge density in S by DFT and compare to its
linear response expression. This will provide the required fourth moment sum rule for the
charge correlations of the homogeneous neutral TCP. In a first step, within DFT, we compute
the density responses δρα(r) to the external potentials, Uα(r) = qαϕext(r) with ϕext(r) the
electrostatic potential created by cext(r), at leading order in qext and in the limit of small
wave-numbers k → 0.

4.1 Analysis Within Density Functional Theory

Since the applied external potential varies on an infinitely large scale length, the particle den-
sities should also display infinitely slow spatial variations. Then, the free-energy functional
can be replaced by its density-gradient expansion introduced above, namely

F{ρ1(·), ρ2(·)} = β

2

∫
drdr′ (q1ρ1(r) + q2ρ2(r))(q1ρ1(r′) + q2ρ2(r′))

|r′ − r|
+

∫
dr f ∗(ρ1(r), ρ2(r), β)

+ 1

12

∑

α,γ

∫
dr M∗

αγ (ρ1(r), ρ2(r), β)∇ρα(r) · ∇ργ (r) + ... , (32)

where the terms left over do not contribute to the deviations δρα(r) at the considered lowest
orders in k, as shown further on. The fundamental equation (21) of DFT then becomes for
each species,

∂ f ∗
∂ρ1

− 1

6

[
M∗
11�ρ1(r) + M∗

12�ρ2(r)
]

− 1

12

[
∂M∗

11
∂ρ1

(∇ρ1(r))
2 + 2

∂M∗
11

∂ρ2
∇ρ1(r) · ∇ρ2(r) +

(
2
∂M∗

12
∂ρ2

− ∂M∗
22

∂ρ1

)
(∇ρ2(r))

2
]

+ ...

= βμ1 − βq1ϕtot(r) (33)

and

∂ f ∗
∂ρ2

− 1

6

[
M∗
22�ρ2(r) + M∗

12�ρ1(r)
]

− 1

12

[
∂M∗

22
∂ρ2

(∇ρ2(r))
2 + 2

∂M∗
22

∂ρ1
∇ρ1(r) · ∇ρ2(r) +

(
2
∂M∗

12
∂ρ1

− ∂M∗
11

∂ρ2

)
(∇ρ1(r))

2
]

+ ...

= βμ2 − βq2ϕtot(r) , (34)

where ϕtot(r) is the total electrostatic potential created by the charge distribution (q1ρ1(r)+
q2ρ2(r)+cext(r)). In Eqs. (33,34) all involved quantities ofS∗ are evaluated for homogeneous
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densities identical to the local densities (ρ1(r), ρ2(r)) and inverse temperature β. Moreover,
all terms left over involve at least fourth-order spatial derivatives of ρ1(r) and ρ2(r).

In order to compute the induced densities at lowest order in qext, we can linearize
Eqs. (33,34) with respect to δρα(r). The third terms in the l.h.s. of those Eqs. do not contribute
anymore since they are at least of order q2ext. The resulting deviations take the form of plane
waves, like the forcing external charge cext(r), namely

δρ1(r) = A1(k) exp(ik · r) and δρ2(r) = A2(k) exp(ik · r) (35)

where the amplitudes Aα(k) are proportional to qext. The total electrostatic potential ϕtot(r)
satisfies Poisson equation

�ϕtot(r) = −4π [q1ρ1(r) + q2ρ2(r) + cext(r)] = −4π [q1δρ1(r) + q2δρ2(r) + cext(r)]

(36)

where the second equality follows from the overall neutrality of the unperturbed system S .
In order to eliminate ϕtot(r) in favor of the induced density deviations, it is then sufficient to
take the Laplacian of the linearized versions of Eqs. (33,34). This provides
[
4πβq21 +χ−1

11 k2+a11k
4+O

(
k6

)]
A1(k) +

[
4πβq1q2 + χ−1

12 k2 + a12k
4 + O

(
k6

)]
A2(k)

= −4πβq1δqext (37)

[
4πβq1q2+χ−1

21 k2+a21k
4+O

(
k6

)]
A1(k) +

[
4πβq22 +χ−1

22 k2+a22k
4 + O

(
k6

)]
A2(k)

= −4πβq2δqext (38)

with χ−1
αγ = ∂2 f ∗/∂ρα∂ργ and aαγ = M∗

αγ /6. Those reference quantities are evaluated for
the set (ρ1, ρ2) ensuring overall neutrality of the unperturbed system S. Notice that if the
thermodynamic function χ−1

αγ is specific to the enlarged auxiliary system S∗, the microscopic
second moments aαγ entirely depend on the direct correlations of the genuine system S of
interest.

The linear Eqs. (37,38) are straightforwardly solved in terms of the determinant of the
associated two by two matrix which reads

D(k) = 4πβ
(
q22χ

−1
11 + q21χ

−1
22 − 2q1q2χ

−1
12

)
k2

+
[
χ−1
11 χ−1

22 − χ−2
12 + 4πβ

(
q22a11 + q21a22 − 2q1q2a12

)]
k4 + O

(
k6

)
. (39)

The amplitudes Aα(k) are then found to be

A1(k) = 4πβ

D(k)

[(
q2χ

−1
12 − q1χ

−1
22

)
k2 + (q2a12 − q1a22)k

4 + O
(
k6

)]
δqext (40)

and

A2(k) = 4πβ

D(k)

[(
q1χ

−1
12 − q2χ

−1
11

)
k2 + (q1a12 − q2a11)k

4 + O
(
k6

)]
δqext . (41)

Therefore the proportionality coefficient between a given amplitude and δqext, behaves in the
limit k → 0 as a constant, which depends only on the thermodynamic quantities χ−1

αγ , plus a

term of order k2 which depends on both χ−1
αγ and aαγ . Now, if we form the induced charge

density

δc(r) = q1δρ1(r) + q2δρ2(r) = cind(k) exp(ik · r) (42)
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with the charge amplitude

cind(k) = q1A1(k) + q2A2(k) , (43)

we find

cind(k) = −δqext

⎡

⎣1 −
(
χ−1
11 χ−1

22 − χ−2
12

)

4πβ(q22χ
−1
11 + q21χ

−1
22 − 2q1q2χ

−1
12 )

k2 + O
(
k4

)
⎤

⎦ . (44)

Remarkably, the proportionality coefficient between the induced and external charges goes to
−1 when k → 0, in relation with perfect screening properties, as discussed further. Further-
more the term of order k2 in its small-k expansion now depends only on the thermodynamical
functions χ−1

αγ , and no longer on the microscopic quantities aαγ .

4.2 The Fourth Moment Sum Rule

The resulting induced charge density, can be also determined within linear response theory,
which provides

δc(r) = −4πβ

k2
S̃(k)δqext exp(ik · r) (45)

In the linear response formula (45), S̃(k) is the Fourier transform of the charge correlations
of the unperturbed system S, i.e. the homogeneous neutral TCP,

S̃(k) =
∫

dr exp(ik · r)
⎡

⎣
∑

α,γ

qαqγ ραγ (r) +
∑

α

q2αραδ(r)

⎤

⎦ (46)

with ραγ (r) the two-body probability density for the spatial configuration where one particle
of species α is fixed at the origin, while another particle of species γ is fixed at r.

The small-k expansion of the amplitude cind(k) can be inferred from the linear response
formula (45) by inserting the corresponding expansion of S̃(k),

S̃(k) = I0 + I2k
2 + I4k

4 + ... , (47)

which only involves powers of k2 thanks to the expected exponential decay of charge correla-
tions in real space. If we compare the resulting expansion of cind(k)with the DFT result (44),
we readily find

I0 = 0 and I2 = 1

4πβ
(48)

which follow from respectively the absence of a 1/k2-term, and the identification of the
constant terms. The vanishing of I0 accounts for the perfect screening of internal charges.
The universal value of I2, first demonstrated a long ago by Stillinger and Lovett [4], ensures
the perfect screening of weak external charges. Beyond those well-known results for the
zeroth and second moments of S(r), the DFT expression (44) also provides a new sum rule
for the fourth moment, namely

I4 = − ρ2

(4π(q1 − q2))2β3

(
χ−1
11 χ−1

22 − χ−2
12

)
χT , (49)
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which follows from the identification of the k2-terms. The compressibility χT emerges in
that sum rule, thanks to the identity (16) rewritten in terms of the charges q1 = Z1q and
q2 = −Z2q .

4.3 Related Sum Rules for Other Models

Let us first consider the case of the OCP. A fourth moment sum rule for the corresponding
charge correlations SOCP(r) was derived by Vieillefosse and Hansen [5] through a macro-
scopic analysis of fluctuations. In their textbook [21], Hansen and Mac Donald propose a
simple derivation which is similar to ours. They compute the charge density induced by a
weak external plane wave charge distribution within an hydrostatic approach, where the force
associated with the local pressure gradient is balanced by the total electrostatic force created
by both the external and induced charges. Notice that the corresponding equation can be
merely obtained by taking the gradient of the fundamental DFT equation (33) restricted to
a single species and where all non-local contributions, including that involving the second
moment of the direct correlations, are omitted. Moreover, the corresponding f ∗ can then be
obviously replaced by fOCP. The fourth moment of SOCP(r) then reduces to [5,21],

IOCP4 = − 1

(4πqρ)2βχOCP
T

. (50)

Notice that this expression has been recovered through manipulations of the BGY hierarchy,
for pure Coulomb interactions [22] and also including short-range interactions [23].

TheOCP result has been extended to amulticomponent ionicmixture (MIM) of all positive
point charges immersed in a rigid neutralizing background [8,9]. Interestingly, the derivation
is intrinsic and does not rely on the response of the system to a weak external charge distri-
bution. Like the analysis [22] carried out for the OCP, it is based on suitable manipulations
of the BGY hierarchy equations for the distribution functions of the infinite homogeneous
neutral system. A priori the derivation is only valid for pure Coulomb interactions, with-
out any short range regularization which is unnecessary here since all mobile charges repel
together. It makes an explicit use of the remarkable homogeneity property of the resulting
pair interactions. The fourth moment of charge correlations in real space is then given by
formula (7.3) in Ref. [9], which reduces in three dimensions (d = 3) to

∫
dr r4 SMIM(r) = − 120

β
∑

α,γ qαqγ ∂ργ /∂μα

(51)

where we have used that qv = ∑
α qαρα , while μα = β−1∂ fMIM/ρα . Each partial derivative

∂ργ /∂μα is computed by fixing the inverse temperature β as well as all μδ’s with δ �= α.
Straightforward manipulations of the multi-variable functions ργ (β, {μα}) and μα(β, {ργ })
allow us to express all partial derivatives ∂ργ /∂μα in terms of partial derivatives ∂μα/∂ργ .
In the binary case, we find

∂ρ1

∂μ1
= ∂μ2

∂ρ2

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

; ∂ρ2

∂μ2
= ∂μ1

∂ρ1

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

∂ρ1

∂μ2
= −∂μ1

∂ρ2

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

; ∂ρ2

∂μ1
= −∂μ2

∂ρ1

[
∂μ1

∂ρ1

∂μ2

∂ρ2
− ∂μ1

∂ρ2

∂μ2

∂ρ1

]−1

.

(52)
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Using the identity

I4 = 1

120

∫
dr r4 S(r) (53)

and inserting relations (52) into formula (51), we find that the corresponding IBIM4 exactly
coincideswith our general expression (49) specified to theBIM,where the free-energy density
f ∗ merely reduces to fBIM. Indeed, our derivation also applies to the BIM where q1 and q2
now have the same sign, while the auxiliary system S∗ becomes identical to the genuine BIM
of interest with the background charge density cB = −qv = −∑

α qαρα .

4.4 About Other Approaches

To our knowledge, in the literature, there exist two attempts to derive a sum rule for the fourth
moment of the charge correlations of the TCP. First, the hydrodynamic approach carried out
in Ref. [6] provides an expression for the fourth moment, different from formula (49), which
involves ill-defined thermodynamic quantities as well as particle masses. Its validity is then
quite doubtful, in particular because classical equilibrium charge correlations do not depend
on particle masses.

Second, van Beijeren and Felderhof [7] proceed to an intrinsic analysis of charge cor-
relations within the grand-canonical ensemble, where they combine the Ornstein-Zernicke
equations with DFTmanipulations. In agreement with results previously derived byMitchell
et al. [24], who shown that the fourthmoment cannot be expressed in terms of thermodynamic
quantities of the sole TCP, they find that it is necessary to introduce non-neutral states of
the TCP which can be realized through the application of a suitable external potential. How-
ever, they did not provide any scheme which determines that external potential. Thus their
free-energy density f 0, from which the thermodynamical chemical potentials are inferred
through the usual identity written in formula (3.12) of Ref. [7], remains a formal quantity,
with no prescriptions for explicit calculations. This ambiguity might explain why their work
is not always cited. According to our analysis, it can be easily clarified as follows. In fact,
as shown in Sect. 2, the external potential mentioned in Ref. [7] is nothing but our potential
UB

α (r) = qαϕB(r) where ϕB(r) is the electrostatic potential created by an homogeneous
background density. Therefore, f 0 is identical to our free-energy density f ∗ of the TCP
immersed in an uniform rigid background. Then, the relation between partial derivatives (52)
allows us to exactly recast formula (6.26) of Ref. [7] as our expression (49), similarly to what
occurs for the corresponding formula obtained for the BIM by Suttorp [9].

5 Asymptotic Expansions at Low Densities

It is instructive to check the fourth moment sum rule for specific models and various ranges
of thermodynamical parameters. Here, we consider the model of charged soft spheres with
the pair interaction uαγ (r) given by formula (2). First, we briefly describe how the pair
correlations of S∗ can be represented by an infinite series of resummed Mayer graphs. Such
resummed diagrammatics constitute a quite suitable framework for deriving low-density
expansions of the quantities of interest. From the diagrammatic representation of charge
correlations, we infer the low-density expansion of I4 defined as the coefficient of the k4-
term in the small-k expansion (47) of S̃(k). The diagrammatics for the pair correlations
also give access to the free energy density f ∗ through thermodynamical identities. The low-
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density expansion of the thermodynamical expression (49) is then computed, and it is shown
to exactly match that of I4, as expected.

5.1 Exploiting the Principle of Topological Reduction

Let ρ∗
αγ,T(r) = ρ∗

αγ (r)−ραργ be the truncated pair distribution functions of S∗, also called
pair correlations, for an arbitrary set of densities (ρ1, ρ2). As argued above, the distributions
function of S∗, which includes a background with charge density cB = −(q1ρ1 + q2ρ2),
are identical to that of of a purely two-component system where the mobile particles are
submitted to the external potential (22) UB

α (r) created by the background. Therefore, pair
correlations ρ∗

αγ,T(r) are represented by series of Mayer diagrams [25] made with two root
(white) points respectively fixed at the origin 0 and at r, and an arbitrary number of black
points whose positions are integrated over. Each point carries a statistical weight

zα = exp
[
β(μα −UB

α )
]

(
2πλ2α

)3/2 , (54)

while two points are connected by at most one Mayer bond

bM = exp(−βuαγ ) − 1 . (55)

Each diagram is simply connected, namely there exists at least one path connecting two
arbitrary points.

The previous Mayer diagrams are difficult to handle because the fugacity weights (54)
are inhomogeneous and depend on the positions of the points. A great simplification can
be achieved by virtue of the principle of topological reduction, nicely exposed in Ref. [21],
which consists in removing all articulation points. An articulation point is such that there
exists at least one subdiagram attached to it and not connected to the rest of the diagram. In
other words, the suppression of the articulation point leaves that subdiagram disconnected
from the two root points. If one sums all those subdiagrams attached to a given articulation
point, all articulation points are removed, while simultaneously all fugacity weights (54) are
replaced by density weights ρα [21]. Furthermore, the topological structure of the diagrams is
conserved through that reduction. Accordingly, the pair correlations ρ∗

αγ,T(r) are represented
by Mayer diagrams made with the two root points fixed at 0 and r, and an arbitrary number
of black points, where the point statistical weights are now the densities ρα . Two point are
still connected at most by one Mayer bond (55). Each diagram is again simply connected but
is now free of any articulation point.

Thanks to the translational invariance of both density weights andMayer bonds, theMayer
density diagrams reveal quite useful for explicit calculations as described further. Notice that,
remarkably, the background does not show in such diagrams, its effects being implicitly and
entirely taken into account by the introduction of the homogeneous densities ρα .

5.2 Abe–Meeron Resummations

Because of the long-range non-integrable decay of two-body interactions uαγ , every Mayer
diagram diverges. All those divergencies can be removed via chain resummations, as first
noticed by Mayer [26] and Salpeter [27], and then performed in a systematic way for the
whole diagrammatical series by Abe [28] and Meeron [29]. A simplified presentation of that
method can be found in Refs. [30] and [31]. It starts with the decomposition of each Mayer
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bond (55) as

bM = bTM − βqαqγ vC (56)

with the truncated bond

bTM = exp(−βuαγ ) − 1 + βqαqγ vC (57)

and the Coulomb potential vC(r) = 1/r . After inserting the decomposition (56) into every
Mayer diagram, one proceeds to systematic resummations of convolution chains of Coulomb
bonds −βqαqγ vC. Thanks to remarkable combinatorial properties [31], all those resumma-
tions can be performed in terms of a single effective potential, which is nothing but the
well-known Debye potential

φD(r) = exp(−κDr)

r
(58)

with the Debye inverse length κD = (
∑

α 4πβq2αρα)1/2. The chain resummations give raise
to two bonds [30], the Debye bond

bD = −βqαqγ φD (59)

and the short-range dressed bond

bR = exp
(
−β

(
uSRαγ + qαqγ φD

))
− 1 + βqαqγ φD , (60)

with the short-range part of pair interactions uSRαγ = uαγ −qαqγ vC. The topological structure
of the genuine Mayer diagrams remain unchanged, with bonds which can be either bD or
bR, and with the additional rule excluding convolutions bD ∗ bD in order to avoid double
counting.

Within the Abe–Meeron resummations, the genuine whole set of Mayer diagrams repre-
senting ρ∗

αγ,T(r) is then exactly transformed into

ρ∗
αγ,T(r) = ραργ

∑

G

1

SG

∫ [
n∏

i=1

∑

αi

driραi

] [∏
bD

∏
bR

]

G
. (61)

The so-called prototype graphs G aremadewith the two root points respectively fixed at 0 and
r, and an arbitrary number of n black points with density weights. Two point are connected at
most by one bond (59) or (60). Each diagram is simply connected, with no articulation points,
while convolutions bD ∗ bD are forbidden. The symmetry factor SG is defined as the number
of permutations of labelled black points which leave the product of bonds

[∏
bD

∏
bR

]
G

unchanged. The summation is carried out over all topologically different graphs G, including
the two graphs with no black points.

In the diagrammatic representation (61), the contribution of every graphG is finite. Indeed,
at large distances, integrability is ensured by the fast decays of both the Debye potential
and the short-range part of pair interactions. At short distances, the Debye bond remains
integrable despite its 1/r singularity, while the short-range dressed bond includes the short-
range regularization which also guarantees its integrability. We stress that representation (61)
holds for any set (ρ1, ρ2) of densities, and then appears to be quite useful for computing
equilibrium quantities of S∗. Moreover it is valid for any short-range regularization uSRαγ ,
including of course that describing soft or hard spheres.
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Fig. 1 The Debye diagram in the resummed diagrammatic representation (61) of particle correlations. The
two root (white points) are fixed at 0 and r respectively. The straight line represents a Debye bond bD (59)

Gd Gd Gd

Fig. 2 The three dressed Debye diagrams associated with a given diagram Gd in the resummed diagrammatic
representation (61) of particle correlations

5.3 Charge Correlations

The Fourier transform (46) of the charge correlations of the homogeneous TCP can be recast
as

S̃(k) =
∑

α,γ

qαqγ ρ̃αγ (k) +
∑

α

q2αρα (62)

where the Fourier transform ρ̃αγ (k) of pair correlations is given by the sum of the Fourier
transforms of the contributions of all graphs G in the representation (61). Let us first consider
the contribution of the simplest graph GD shown in Fig. 1, where the two root points are
connected by a Debye bond. Its contribution to S̃(k) added to the constant term

∑
α q

2
αρα in

the formula (62) provides the well-known Debye charge correlations

S̃D(k) = κ2
D

4πβ

k2

k2 + κ2
D

, (63)

which can be derivedwithin amean-field treatment of correlations, without any diagrammatic
considerations. Now we stress that S̃D(k) saturates the first two moments sum rules for I0
and I2, since S̃D(k) ∼ k2/(4πβ) when k → 0. Therefore all the remaining graphs in the
representation (61) give no contributions to I0 and I2. That remarkable property is related to
the following reorganization of the series of graphs, which turns out to be also quite useful
for computing the fourth moment I4.

Let Gd be a graph in the representation (61) such that the root points 0 and r are not
connected to rest of the diagram by a single Debye bond bD, or in other words each root
point is connected to the rest of the diagram by either a bond bR or at least two bonds. Such
a graph can be dressed by Debye bonds in the sense that the three graphs shown in Fig. 2
also intervene in the representation (61). In GDd (GdD), the black point r1 is connected to
the root point 0 ( r) by a Debye bond bD, while the subdiagram connecting that black point
to the other root point r ( 0 ) is identical to Gd itself. In GDdD, the two black points r1 and
r2 are respectively connected to the root points 0 and r by Debye bonds bD, while they are
connected together by a subdiagram identical to Gd. Clearly, all possible graphs Gd together
with their dressed Debye family generate all graphs in the representation (61) beyond the
Debye graph GD.

Now, let us consider the total contribution to representation (61) of a given graph Gd and
of its dressed Debye diagrams. After defining

Kαγ,Gd (r) =
∫ [

n∏

i=1

∑

αi

driραi

] [∏
bD

∏
bR

]

Gd
(64)
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and noticing that all four graphs Gd, GDd, GdD and GDdD have the same symmetry factor SGd ,
we can rewrite that total contribution as ραργ /SGd times

Kαγ,Gd (r) −
∑

α1

ρα1

∫
dr1

[
βqαqα1φD(r1)Kα1γ,Gd (|r − r1|)

+Kαα1,Gd (r1)βqα1qγ φD(|r − r1|)
]

+
∑

α1,α2

ρα1ρα2

∫
dr1dr2βqαqα1φD(r1)Kα1α2,Gd (|r2 − r1|)βqα2qγ φD(|r − r2|) (65)

The corresponding contribution to S̃(k) in formula (62) can be readily computed by using
the convolution theorem and φ̃D(k) = 4π/(k2 + κ2

D), with the result

k4
(
k2 + κ2

D

)2
∑

α,γ

ραργ qαqγ K̃αγ,Gd (k) (66)

divided by the symmetry factor SGd . Since that expression is at least of order k
4 when k → 0

for any Gd, all the graphs beyond the Debye graph GD do not contribute neither to I0, nor
to I2. Moreover, because of the prefactor of order k4, the resulting contribution to I4 makes
K̃αγ,Gd (0) appear. After adding the simple contribution of GD computed from the Debye
formula (63), we eventually obtain the diagrammatic representation of I4,

I4 = − 1

4πβκ2
D

+ 1

κ4
D

∑

Gd

1

SGd

∑

α,γ

ραργ qαqγ K̃αγ,Gd (0) . (67)

Representation (67) is well-suited for computing the low-density expansion of I4. Indeed,
and as usual, because of the densityweights carried by the black points, only a finite number of
graphs contribute up to a given order. However, herewe have to take care of the dependence on
the density of the bonds bD and bR through the Debyewavenumber κD = (

∑
α 4πβq2αρα)1/2.

Consequently, the order of a contribution is not merely given by counting the number of black
points on the one hand, while half-integer powers and logarithmic terms arise in the expansion
on the other hand. We have computed the first three terms of that expansion, up to constant
terms of order ρ0 included. In the Appendix, we provide some technical details, as well as
the complete list of graphs Gd which contribute up to the considered order. The resulting
expansion reads

I4 = − 1

4πβκ2
D

+ πβ2

κ5
D

∑

α,γ

q3αq
3
γ ραργ + 2πβ3

3κ4
D

∑

α,γ

q4αq
4
γ ραργ ln(8κDdαγ )

+4πβ

κ4
D

∑

α,γ

q2αq
2
γ ραργ d

2
αγ − 3πβ2

κ4
D

∑

α,γ

q3αq
3
γ ραργ dαγ

+ 1

κ4
D

∑

α,γ

qαqγ ραργ

∫
dr

[
exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6

]

+11π2β4

3κ6
D

∑

α,γ,δ

q3αq
3
γ q

4
δ ραργ ρδ − 52π3β5

9κ8
D

∑

α,γ,δ,η

q3αq
3
γ q

3
δ q

3
ηραργ ρδρη + o(ρ0) .

(68)

Not surprisingly, the leading term in the expansion (68) is the purely Debye contribution,
and it behaves as 1/ρ. The next correction is of order 1/ρ1/2 and is independent of the short-
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range part of the interactions. Those short-range parts arise in further corrections of order
ln ρ and ρ0. The last two terms of order ρ0 are purely Coulomb contributions. The expansion
is valid for any set of densities (ρ1, ρ2), including of course the neutral sets defining the
neutral TCP. For other short-range interactions, like hard cores for instance, the structure of
the low-density expansion of I4 is identical to that (68) explicitly computed for charged soft
spheres.

5.4 Free Energy Density

The excess free energy of S∗ for any set of homogeneous densities, can be obtained through
the usual integration over the inverse temperature of the equilibrium average of the potential
part of Hamiltonian (11). The resulting free energy density in thermal units f ∗(ρ1, ρ2, β)

reduces to

f ∗(ρ1, ρ2, β) = fid(ρ1, ρ2, β) + 1

2

∑

α,γ

∫ β

0
dτ

∫
drρ∗

αγ,T(r)uαγ (r)

+β

2

∑

α,γ

ραργ

∫
druSRαγ (r) . (69)

In that formula, the first term takes the familiar form

fid(ρ1, ρ2, β) = ρ1

[
ln

(
ρ1

(
2πλ21

)3/2) − 1
]

+ ρ2

[
ln

(
ρ2

(
2πλ22

)3/2) − 1
]

(70)

which describes a mixture of ideal gases. The next two terms account for interactions. The
second term involving pair correlations ρ∗

αγ,T(r) is obtained by adding and substracting uSRαγ

to the purely Coulomb interactions in the particle-backround and background-background
parts of the potential energy of Hamiltonian (11). This also provides the third term which
merely reduces to

β

2

∑

α,γ

ραργ

∫
druSRαγ (r) = −2πβ

∑

α,γ

qαqγ ραργ d
2
αγ . (71)

It is implicitly understood that pair correlations ρ∗
αγ,T(r) in formula (69) are evaluated at

inverse temperature τ .
The contribution of pair correlations ρ∗

αγ,T(r) to f ∗ follows by inserting its resummed
diagrammatic representation (61) into the second term of formula (69). The contribution of
a given diagram G reads

1

2SG

∑

α,γ

ραργ

∫ β

0
dτ

∫
dr uαγ (r)K (τ )

αγ,G(r) (72)

where K (τ )
αγ,G(r) is the integral (64) over black pointswithG in place ofGd and bonds evaluated

at inverse temperature τ . In the low-density limit, up to a given order in the density, only a
finite number of contributions (72) needs to be retained. In the Appendix, we provide a few
technical details of the calculations, as well as the list of graphs G which contribute to f ∗ up
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to order ρ2 included. Adding the simple ideal (70) and background (71) contributions, we
eventually obtain the low-density expansion of f ∗,

f ∗ = ρ1

[
ln

(
ρ1

(
2πλ21

)3/2) − 1

]
+ ρ2

[
ln

(
ρ2

(
2πλ22

)3/2) − 1

]
− κ3D

12π

−2πβ
∑

α,γ

qαqγ ραργ d
2
αγ + 3πβ2

2

∑

α,γ

q2αq
2
γ ραργ dαγ − πβ3

3

∑

α,γ

q3αq
3
γ ραργ ln(8κDdαγ )

−1

2

∑

α,γ

ραργ

∫
dr

[
exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6

]
+ o(ρ2) . (73)

The leading terms of order ρ ln ρ in the expansion (73) are ideal contributions. The next
correction of order ρ3/2 arises from pure Coulomb interactions, and is nothing but the well-
known Debye term. Contributions from the short range part of the interactions appear in the
terms of order ρ2 ln ρ and ρ2. The terms left over are least of order ρ5/2 ln ρ. Expansion (73)
is valid for any set of densities (ρ1, ρ2), and it gives access to all the other thermodynamical
functions ofS∗ through suitable partial derivativeswith respect to the independent parameters
β, ρ1 or ρ2 defining an homogeneous equilibrium state of S∗.

For other short-range regularizations, the low-density expansion of f ∗ has the same
structure as (73). However, notice that for hard core potentials, the ideal term in the decom-
position (69) of the corresponding f ∗ must be replaced by the free energy density of hard
spheres, fHS(ρ1, ρ2, β). In the low-density limit, fHS(ρ1, ρ2, β) can be expanded in entire
powers of ρ around the ideal term (70). In the resulting full expansion of f ∗, there are terms
which depend only on the hard core diameters σαγ and not on the particles charges.

5.5 Checking the Sum Rule at Lowest Orders

In order to check the sum rule (49), we first have to compute the low-density expansion of
the partial compressibilities χ−1

αγ = ∂2 f ∗/∂ρα∂ργ . Using expansion (73) of f ∗, we find

χ−1
11 = 1

ρ1
− πβ2q41

κD
+ 3πβ2q41d11 − 4πβq21d

2
11 − 2πβ3q61

3
ln(8κDd11)

−8π2β4q51
3κ2

D

∑

α

q3αρα + 8π3β5q41
3κ4

D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu11) − 1 + βu11 − β2u211/2 + β3u311/6

] + o(ρ0) , (74)

χ−1
22 = 1

ρ2
− πβ2q42

κD
+ 3πβ2q42d22 − 4πβq22d

2
22 − 2πβ3q62

3
ln(8κDd22)

−8π2β4q52
3κ2

D

∑

α

q3αρα + 8π3β5q42
3κ4

D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu22) − 1 + βu22 − β2u222/2 + β3u322/6

] + o(ρ0) , (75)
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and

χ−1
12 = χ−1

21 = −πβ2q21q
2
2

κD
+ 3πβ2q21q

2
2d12 − 4πβq1q2d

2
12 − 2πβ3q31q

3
2

3
ln(8κDd12)

−πβ3q31q
3
2

3
− 4π2β4q21q

2
2

3κ2
D

∑

α

q4αρα + 8π3β5q21q
2
2

3κ4
D

∑

αγ

q3αq
3
γ ραργ

−
∫

dr
[
exp(−βu12) − 1 + βu12 − β2u212/2 + β3u312/6

] + o(ρ0) . (76)

Notice that the leading contributions of order 1/ρ in both χ−1
11 and χ−1

22 arise from the
ideal terms in f ∗, while the next correction of order 1/ρ1/2 comes from the Debye term in
expansion (73). The leading contribution of order 1/ρ1/2 in χ−1

12 is also provided by that
Debye correction. All terms which are left over in expansions (74), (75) and (76) are at least
of order ρ1/2 ln ρ.

According to the expression (16) of the isothermal compressibility, the thermodynamical
quantity in the right hand side of sum rule (49) can be rewritten as

− ρ2

(4π(q1 − q2))2β3

(
χ−1
11 χ−1

22 − χ−2
12

)
χT= −

(
χ−1
11 χ−1

22 − χ−2
12

)

(4πβ)2
(
q22χ

−1
11 +q21χ

−1
22 − 2q1q2χ

−1
12

) .

(77)

The low-density expansion of that thermodynamical expression is straightforwardly com-
puted by using the expansions (74), (75) and (76) of the χ−1

αγ ’s. Its leading behaviour is

immediately obtained by noticing that both χ−1
11 and χ−1

22 diverge faster than χ−1
12 in the zero-

density limit, and the corresponding purely ideal behaviours χ−1
11 ∼ 1/ρ1 and χ−1

22 ∼ 1/ρ2
provide

−
(
χ−1
11 χ−1

22 − χ−2
12

)

(4πβ)2
(
q22χ

−1
11 +q21χ

−1
22 − 2q1q2χ

−1
12

) ∼ − ρ−1
1 ρ−1

2

(4πβ)2
(
q22ρ

−1
1 + q11ρ

−1
2

)=− 1

4πβκ2
D

,

(78)

which coincides with the leading term in expansion (68) of I4. The calculation of the next
correction of order 1/ρ1/2 remains simple, since it requires to retain only the first Debye
corrections of order 1/ρ1/2 to the ideal terms in bothχ−1

11 andχ−1
22 , whileχ−1

12 can be replaced
by its leading Debye behaviour. The determination of the terms of order ρ0 and ρ0 ln ρ is
still straightforward but more cumbersome. Eventually, we find that all those corrections to
the ideal behaviour (78) of the thermodynamical quantity (77) exactly match the low-density
expansion (68) of I4 inferred from its microscopic definition. Thus, the fourth moment sum
rule perfectly works, at least up to the considered order in the density.

6 Concluding Comments and Perspectives

In this paper, we have derived a new sum rule for the fourthmoment of charge correlations of a
TCP. Since the Stillinger–Lovett second moment sum rule naturally emerges as a by-product
of our analysis, we believe that this new sum rule holds in any conducting phase, although
all the steps of its derivation are not under a complete mathematical control at the moment.
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In particular, we expect that the free energy functional can be safely expanded around homo-
geneous states inside the conducting phase. We stress that all the partial compressibilities of
the auxiliary system, namely second partial derivatives with respect to particle densities of
the free energy density, have then to be well defined. Thus critical points must be dealt with
some care, since singularities in the thermodynamical quantities arise on the one hand, while
perfect screening properties can be lost on the other hand, as mentioned below.

Our derivation also involves implicit assumptions about the existence of the thermody-
namic limit, and of intrinsic bulk properties with bulk densities which become homogeneous
far from the boundaries. Strictly speaking, to our knowledge, this has been only proved for
the general three-dimensional TCP in the Debye regime [12] and for its charge-symmetric
version [13]. In two dimensions, where the Coulomb potential takes a logarithmic form, both
the neutrality and homogeneity of a TCP of point charges have been proved [32]. Extensions
of such results to all the systems introduced here would be quite valuable of course, and
might constitute the first steps towards a complete proof of our sum rule. Meanwhile, physi-
cal arguments, in particular related to the beautiful proof for quantum Coulomb matter [14],
strongly suggest that the classical TCP, as well as its version immersed in a charged uniform
background, do sustain a well-behaved TL. Furthermore, there are strong evidences, arising
either from specific models or mean-field approaches, that screening properties in the bulk
can be disentangled from the reorganization of charges at the surface, so any boundary effects
can be indeed a priori ignored.

In the absence of a complete mathematical proof, checking the sum rule within exact
calculations for specific models or thermodynamical regimes is particularly valuable. Here,
such checking has been carried out for charged soft spheres in the low density regime, through
the explicit calculation of the lowest order terms in density expansions of the quantities of
interest. This illustrates the subtle interplay between short-range and screened Coulomb
contributions which ultimately ensure the validity of the fourth moment sum rule at the
considered orders. If there exists a simple reorganization of the Abe–Meeron diagrams which
shows the validity of the secondmoment Stillinger Lovett sum rule at any order in the density
expansion, a similar trick for the fourth moment sum rule, certainly more cumbersome,
remains to be discovered.

If our derivation of the fourth moment sum rule is based on the response to external pertur-
bations, more intrinsic derivations would be of great interest, both for enforcing its expected
validity on the one hand, and for sheding light on the internalmechanisms at work on the other
hand. For instance, the second moment Stillinger Lovett sum rule can be retrieved within
suitable manipulations of the BGY hierarchy equations for the equilibrium distribution func-
tions of the unperturbed homogeneous TCP, as shown by Gruber and Martin [33]. Moreover,
the BGY hierarchy equations have been also used for deriving the fourth moment sum rule
for the OCP [23] and for the BIM with pure Coulomb interactions [9]. We are looking for
extending such derivations to the TCP case, where the presence of short-range interactions
requires further manipulations. Notice, that a full reorganization of Abe–Meeron diagram-
matics as described above could be also seen as an intrinsic derivation. In the same spirit, let
us mention that a sixth moment sum rule for the charge correlations of the two-dimensional
OCPwith logarithmic interactions was established through a full term by term analysis of the
Abe–Meeron diagrammatics for the short-range part of the direct correlation function [34].
It turns out that, as a consequence of specific properties of the pure logarithmic interaction,
only the simplest graph built with the screened two-dimensional Debye potential contributes
to the small-k expansion up to order k2 included in the Fourier transform of that quantity.
The sixth moment of particle correlations, which then coincide with charge correlations,
straightforwardly follows by applying the Ornstein-Zernicke equation.
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The fourth moment sum rule obviously extends to the TCP immersed in a charged
background, namely the thermodynamical expression (49) of the fourth moment of charge
correlations is not restricted to densities satisfying overall neutrality, but it is valid for any
set of densities (ρ1, ρ2). This is well illustrated by the low density calculations for charged
soft spheres. Moreover, a similar DFT analysis combined with linear response theory can be
carried out for an arbitrary number n of components. This would lead to formulae analogous
to the thermodynamical expression (49), but with a more complicated structure arising from
the inversion of a n × n matrix. In the case of the MIM, they should be equivalent to those
derived by Suttorp [9]. Eventually, within our formalism, one can obtain sum rules for the
zeroth and second moment of particle-charge correlations, by comparing the DFT calcula-
tion of a given particle density to its linear response expression. Such sum rules are again
equivalent to those obtained for the MIM [9].

Among the various possible applications of our new sum rule, we would like to emphasize
its usefulness for a better understanding of the plausible lack of screening properties at the
ionic critical point. The liquid-gas transition of a TCP has been widely studied the last twenty
years. Let us mention for instance two recent works [35,36]. Numerical simulations have
convincingly shown that both liquid and gas phases display perfect screening properties,
namely the second moment Stillinger–Lovett sum rule is satisfied. However, a first suspicion
about the violation of that sum rule at the critical point was pointed out by Caillol [37]. Mean-
while, such violation was also observed for a solvable asymmetric mean-spherical model by
Aqua and Fisher [38], which is expected to share common properties with an asymmetric
TCP. More recently, and contrarily to various theoretical expectations, the violation of the
Stillinger Lovett sum rule at the critical point was also observed for the fully symmetric RPM
by Das, Kim and Fisher [11] : they provide strong numerical evidences by combining refined
Monte Carlo simulations in the grand-canonical ensemble with finite-size scaling methods.
Furthermore, they also show that the fourth moment of charge correlations diverges when
approaching the critical point, in a way analogous to the isothermal compressibility. Clearly,
our thermodynamical expression (49) of that fourth moment constitutes a promising tool for
analyzing its behaviour near the critical point, as well as the underlying coupling between
charge and mass fluctuations. In a similar spirit, let us quote a recent work by Piasecki et
al. [39] where the Kirkwood superposition approximation is shown to be inconsistent with
the divergency of the compressibility at the critical point for a system with short-range inter-
actions.

Eventually, let us conclude by a few comments regarding the two dimensional (2D) case.
The sum rule for the fourth moment of charge-charge correlations derived here explicitly
in three dimensions (3D), can be straightforwardly extended to the 2D case : this leads to
the simple replacement of the factor 4π in formula (49) by the factor 2π , a direct con-
sequence of the modification of Poisson equation when changing from 3D to 2D. In 2D,
the Coulomb potential takes the well-known logarithmic form. Since the corresponding
singularity at the origin is relatively weak, the TCP of point charges is well behaved for
coupling constants � < 2, namely at sufficiently high temperatures [40]. Then, thanks to
scaling properties of the logarithmic interaction, the corresponding equation of state can be
exactly computed, providing a simple explicit expression for the compressibility, i.e. the
zeroth moment of density-density correlations. The sum rules for particle-charge correla-
tions analogous to that derived in Ref.[9] also take simple explicit forms [41]. Moreover,
the diagrammatic analysis of the direct correlation function for the 2D OCP introduced in
Ref. [34], can be extended to the sum of the two direct correlation functions for the 2D
fully symmetric TCP of point charges [42]. After use of the Ornstein-Zernicke equation, this
provides an exact explicit expression for the second moment of the density-density corre-
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lations. Checking our new sum rule in that case requires further calculations, in particular
because this involves the difference of the two direct correlation functions instead of their
sum.

The 2D TCP of point charges collapses at � = 2, so short-range interactions need to
be introduced for � ≥ 2. At � = 2, Cornu and Jancovici [43] exploited a mapping with
a field theory model valid for pure Coulomb interactions, which allowed them to derive
analytical expressions for particle correlations of the 2D TCP immersed in a background.
Those results obtained in a planar geometry were retrieved by Forrester and Jancovici [44]
by working on a sphere and using a more general formalism. Such expressions are expected
to become exact in the zero density limit for the well-behaved TCP including short-range
interactions. Thus, they constitute a reliable starting point for further checking of the fourth
moment sum rule at � = 2, which nevertheless requires an additional detailed analysis of
short-range contributions at low densities. Similarly to its application to the study of ionic
criticality in 3D, the fourthmoment sum rule should also bring new insights for the celebrated
Kosterlitz-Thouless transition [45,46] : in the temperature-density plane, there appears a line
of critical points separating a high-temperature conducting phase from a low-temperature
dielectric phase [47]. The implications of the fourth moment sum rule should complete the
results of a previous work [48], where a plausible scenario for the large-distance decay of
particle correlations in the dielectric phase was constructed in a way consistent with various
sum rules.

Acknowledgments This work was presented at the conference in the memory of Bernard Jancovici (Institut
Henri Poincaré, Paris, 5 and 6 november 2015), and it is dedicated to him.We would also like to thankMichael
Fisher for his stimulating interest and useful discussions.

Appendix

In Fig. 3, we list the seven diagrams Gd which contribute to the diagrammatic series (67) for
the fourth moment I4 up to order ρ0 included.

When computing the Fourier transform K̃αγ,Gd (0) for each of those diagrams, we can
apply the convolution theorem at various places, namely with intermediate points which
reduce either to the black points for graphs G(2)

d and G(3)
d , or to the root white points for

graphs G(4−7)
d by exploiting translational invariance. Two key quantities turn then to be the

inverse Fourier transform of [φ̃D(k)]2 and [φ̃D(k)]3 which reduce respectively to

G(1)
d

G(2)
d

G(3)
d

G(4)
d G(5)

d G(6)
d G(7)

d

Fig. 3 The seven diagrams Gd which contribute to I4 up to order ρ0 included in the diagrammatic series (67).
The bubbles represent short-range dressed bonds bR (60)
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1

(2π)3

∫
dk exp(−ik · r) 16π2

(
k2 + κ2

D

)2 = 2π

κD
exp(−κDr) (79)

and

1

(2π)3

∫
dk exp(−ik · r) 64π3

(
k2 + κ2

D

)3 = 2π2

κ3
D

(1 + κDr) exp(−κDr) , (80)

after a straightforward application of the theorem of residues. Another useful trick relies on
the decomposition

bR = b(T)
R − βuSRαγ + β2

2

(
uSRαγ + qαqγ φD

)2 − β3

6

(
uSRαγ + qαqγ φD

)3
(81)

with the truncated bond

b(T)
R = exp

(
−β

(
uSRαγ + qαqγ φD

))
− 1 + β

(
uSRαγ + qαqγ φD

)
− β2

2

(
uSRαγ + qαqγ φD

)2

+β3

6

(
uSRαγ + qαqγ φD

)3
. (82)

Indeed, the corresponding contribution of the truncated bond b(T)
R in graphs G(1−5)

d can be
computed at lowest order in the density by merely replacing uSRαγ + qαqγ φD by the bare

pair potential uαγ since (exp(−βuαγ ) − 1 + βuαγ − β2u2αγ /2 + β3u3αγ /6) is integrable in
the whole space. The next density-dependent corrections to that leading contribution behave
as ρ1/2 and can thus be neglected in the considered calculation of I4 up to order ρ0. The
contributions of the other terms in the decomposition (81) are easily computed thanks to the
simple analytic expressions of uSRαγ and φD. Eventually, combining the above convolution
and decomposition tricks, we obtain formula (68) for I4.

The five graphs in the series (61) for particle correlations which provide contributions (72)
to the free-energy density f ∗ are listed in Fig. 4. Each contribution follows from formula (72),
so the value K (τ )

αγ,G(r) of each graph is first computed with bonds bD and bR evaluated at

temperature τ . After multiplication of K (τ )
αγ,G(r) by the pair potential uαγ (r), the further

integrals over r in the whole space are readily computed by using decomposition (81) with τ

in place of β, as well as the inverse Fourier transforms of [φ̃D(k)]2 given by expression (79),
and of φ̃D(k)4π/k2 which reduces to

1

(2π)3

∫
dk exp(−ik · r) 16π2

k2
(
k2 + κ2

D

) = 4π

κ2
Dr

(1 − exp(−κDr)) . (83)

The final integrals over τ from 0 to β are then easily and explicitly performed for all
terms which reduce to combinations of powers laws and logarithmic terms. It remains a term
involving

GD G(1)
d

G(1)
Dd G(1)

dD
G(1)
DdD

Fig. 4 The five diagrams G which contribute to f ∗ up to order ρ2 included
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∫
dr uαγ

[
exp(−τuαγ ) − 1 + τuαγ − τ 2

2
u2αγ

]
, (84)

whose integration over τ leads to the last correction of order ρ2 in the formula (73) for f ∗.
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