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Abstract
We discuss the problem of anyonic statistics in one and two spatial dimensions from 
the point of view of statistical physics. In particular, we want to understand how the 
choice of the Born–von Karman or the twisted periodic boundary conditions neces-
sary in a Monte Carlo simulation to mimic the thermodynamic limit of the many 
body system influences the statistical nature of the particles. The particles can either 
be just bosons, when the configuration space is simply connected as for example for 
particles on a line. They can be bosons and fermions, when the configuration space 
is doubly connected as for example for particles in the tridimensional space or in a 
Riemannian surface of genus greater or equal to one (on the torus, etc.). They can be 
scalar anyons with arbitrary statistics, when the configuration space is infinitely con-
nected as for particles on the plane or in the circle. They can be scalar anyons with 
fractional statistics, when the configuration space is the one of particles on a sphere. 
One can further have multi-components anyons with fractional statistics when the 
configuration space is doubly connected as for particles on a Riemannian surface of 
genus greater or equal to one. We determine an expression for the canonical parti-
tion function of hard core particles (including anyons) on various geometries. We 
then show how the choice of boundary condition (periodic or open) in one and two 
dimensions determines which particles can exist on the considered surface.
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1 Introduction

For the statistical mechanics of a systems of many anyons, very partial results can 
be obtained, because the exact solution of a gas of anyons is not known. In fact, 
in contrast to the bosonic or fermionic case where the statistics is implemented 
by hand on the many body Hilbert space by constructing completely symmetric 
or antisymmetric products of single particle wave functions, for anyons the com-
plicated boundary conditions for the interchange of any two particles require the 
knowledge of the complete many-body configurations. Only the two-body prob-
lem is exactly soluble for anyons, and hence only the two-body partition function 
can be computed exactly. Since the thermodynamic limit cannot be performed, 
one has to resort to approximate or alternative methods to study the statistical 
mechanics of anyons [1, 2]. For example, if the thermodynamic functions are 
analytic in the particle density, it is well-known that the low density, or equiva-
lently the high temperature limit, of a (free) gas can be investigated using the 
virial expansion.

Anyons have had important physical applications, and it would be wrong to 
convey the idea that they are just mathematical fantasies. For example, physical 
objects which can be described as anyons are the quasi-particle and quasi-hole 
excitations of planar systems of electrons exhibiting the fractional quantum Hall 
effect (QHE) (for a review see for instance [3]). Most of the great interest that 
anyonic theories have attracted in the past few years derives precisely from their 
relevance to a better understanding of the fractional QHE [4], in conjunction with 
several claims that anyons can provide also a non-standard explanation of the 
mechanism of high temperature superconductivity [5]. Even if recent experiments 
have cast some shadow on the relevance of fractional statistics to the observed 
high temperature superconductivity [6–8].

In this work, we focus on the important problem of how the boundary condi-
tions on the simulation box influence the statistics of the anyonic (see chapter 2 
of Ref. [9]) particles. We will consider various cases: the infinite line, the circle, 
the infinite plane, the torus, and the sphere. In each case, we will determine the 
nature of the statistics of the many anyons system. This is important because in a 
simulation of a real material one usually chooses periodic boundary conditions in 
order to approach the thermodynamic limit.

Another interesting problem is the determination of a spinor for an anyon with 
a given rational or even irrational (either algebraic or even transcendental) sta-
tistics. If the spin-statistics theorem [10] which states that, as a consequence of 
Lorentz invariance and of locality, half integer spin particles must obey to Fermi 
statistics and integer spin particles must obey to Bose statistics, there is nothing 
similar for anyonic statistics [11]. Citing Wilczek [12] we can say that “The basic 
difficulty, which makes this problem much more difficult for generic anyons than 
for bosons or fermions, is that for generic anyons the many-body Hilbert space 
is in no sense the tensor product of the one-particle Hilbert space. This circum-
stance can be understood in various ways. Its root is that in the general case the 
weighting supplied by anyon statistics depends not only on the initial and final 
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states, but also on a (topological) property of the trajectory connecting them. This 
means that in the general case it is impossible to summarize the effect of quan-
tum statistics by projection on the appropriate weighted states, as we do for bos-
ons and fermions—where, of course, we project, respectively, on symmetric and 
antisymmetric states.” We will consider this problem in a future work.

The work is organized as follows: in Sect.  2, we describe the statistical physics 
anyons problem in two dimensions; in Sect. 3, we prove for a two particle case that the 
periodic boundary conditions of the Born–von-Karman type needed in a simulation of 
a real material play a relevant role in the anyons problem and we review, accordingly, 
various cases: For scalar, many body wave functions on the segment or the infinite 
line one can have only bosons, on the circle one can only have anyons with arbitrary 
statistics, on the square or the infinite plane one can also have only anyons with arbi-
trary statistics, and on the torus which has two periodicities only bosons and fermions 
are allowed as on the infinite three-dimensional Euclidean space. We gave an original 
proof of these different behaviors for just a system of two, body with scalar wave func-
tions; Sect. 4 is for our final remarks and conclusions.

2  The Statistical Physics Anyon Problem in Two Dimensions

The statistical mechanical properties of a quantum system of N hard core particles in a 
volume V in d spatial dimensions occupying positions q ∈ (IRd)N and described by an 
Hamiltonian Ĥ in thermal equilibrium at the inverse temperature � = 1∕kBT , with kB 
the Boltzmann constant and T the absolute temperature, are obtainable from the ther-
mal density matrix operator [13],

In the configurations space representation, the thermal density matrix can be written 
using the following path integral notation,

where H(q, q̇) is the classical Hamiltonian of the N hard core, identical particles. 
The meaning of �1(Md

N
) and of the phases � will be shown in the next two sections.

The canonical partition function can then be found from the trace of the density 
matrix,

(1)�̂� = exp(−𝛽Ĥ).

ρ(q , q; β) =
α∈π1(Md

N )

χ(α)
–

–

qα( β)=q

qα(0)=q

e−
1 β

0 dτ H(qα(τ),q̇α(τ)) Dqα, (2)

(3)Z(N,V , T) = ∫ �(q, q;�) dq.
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2.1  Md

N
 and Its Fundamental Group

Consider a system of N identical hard core particles moving in the Euclidean 
d-dimensional space, IRd . A configuration of such a system is clearly specified by the 
N coordinates of the particles, i.e., by an element of (IRd)N . However, because of the 
hard core assumption, any two particles cannot occupy the same position. So from 
(IRd)N we have to remove the diagonal,

Furthermore, our particles are identical and indistinguishable, so we should iden-
tify configurations which differ only in the ordering of the particles. In other words, 
we should divide by the permutation group SN . Therefore, we conclude that the con-
figuration space for our system is

To find the fundamental group of such space is a standard problem in algebraic 
topology, which was solved in the early 60’s [14–16]. It turns out that the fundamen-
tal group of Md

N
 is given by

where BN is Artin’ s braid group of N objects which has the permutation group SN as 
a homomorphic image [17, 18].

Even from this formal point of view, we see that there is a crucial difference 
between two and three or more dimensions. To have a more explicit understanding 
of (6), let us consider a two particle example in light of what we have just observed. 
Let us start with the case of two dimensions. Instead of assigning the position vec-
tors �1 and �2 for the two particles, is more convenient to introduce the center of 
mass coordinate,

and the relative coordinate,

We have removed the origin because of the hard core requirement. Since � is invari-
ant under the permutations of S2 , we can write,

where r2
2
 is some space describing the two degrees of freedom of the relative motion. 

We now argue that r2
2
 has the topology of a cone. Since two configurations which 

differ only in the ordering of the particle indexes are indistinguishable, � and −� 

(4)Δ = {(�1,… , �N) ∈ (IRd)N ∶ �i = �j for some i ≠ j}.

(5)Md
N
=

(IRd)N − Δ

SN
.

(6)�1(M
d
N
) =

{
SN if d ≥ 3

BN if d = 2

(7)� =
1

2
(�1 + �2) ∈ IR2,

(8)� = �1 − �2 ∈ IR2 − {0}.

(9)M2
2
= r2

2
× IR2,
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must be identified. The space r2
2
 is then the upper half plane without the origin and 

with the positive x-axis identified with the negative one, i.e., is a cone without the 
tip (see Fig. 1).

According to the decomposition (9), any loop in M2
2
 can be classified by the number 

of times it winds around the cone r2
2
 . Two loops q and q′ with different winding num-

bers are homotopically inequivalent: it is not possible to deform one into the other since 
the vertex of the cone has been removed. Thus, the space r2

2
 and r2

2
× IR2 are infinitely 

connected, and,

It is important to realize that if the vertex of the cone was included (i.e., allowing 
particles to occupy the same position in space), the configuration space would be 
simply connected. Any loop, even when winding around the cone, would be con-
tracted to a point by deforming and unwinding it through the tip. Thus, if we do 
not impose the hard core constraint on the particles, we can describe only bosonic 
statistics.

Let us now turn to the case of two particles in three dimensions. After introduc-
ing the center of mass coordinate � ∈ IR3 , we can decompose the configurations 
space as,

where the space r3
2
 describes the three degrees of freedom of the relative motion. 

These are the length and the two angles of the relative coordinate � . As before, � and 
−� are identified. It is easy to realize that r3

2
 is just the product of the semi-infinite 

(10)�1(M
2
2
) = �1(r

2
2
× IR2) = �� = B2.

(11)M3
2
= r3

2
× IR3,

Fig. 1  Schematic representation 
of r2

2
 with the topology of a cone 

without the tip. It is an infinitely 
connected space (Color figure 
online)

Fig. 2  Schematic representation 
of P2 as the northern hemi-
sphere with opposite points on 
the equator being identified. It is 
a doubly connected space (Color 
figure online)

x

x
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line describing |�| and the projective space P2 describing the orientation of ±�∕|�| . 
In turn, P2 can be described as the northern hemisphere with opposite points on the 
equator being identified (see Fig. 2).

The space P2 is doubly connected and admits two classes of loops: those which 
can be shrunk to a point by a continuous transformation and those which cannot. In 
Fig. 3, we exhibit a typical contractible loop q1 and a typical non-contractible loop q2.

Therefore, from the decomposition (11) and the topology of r3
2
 , we deduce that,

Thus, only bosons and fermions can exist, the former corresponding to contract-
ible loops and the latter to non-contractible loops.

We have seen that at the heart of the anyonic statistics, there is the braid group 
BN in place of the permutation group SN which is responsible for ordinary statistics. 
There are only two one-dimensional unitary representations of SN , namely the iden-
tical one, �( even and odd permutations) = +1 (bosonic statistics) and the alter-
nating one, �( even permutations) = +1 , �( odd permutations) = −1 (fermionic 
statistics). Whereas the braid group admits a whole variety of one-dimensional1 uni-
tary representations whose labeling parameter will be identified with the parameter � 
also called the statistics.

2.2  Statistical Mechanics Problem

One is usually interested in calculating the partition function of the system which 
is given by the trace of the density matrix. So we choose q = q� , or loops in Md

N
 . 

Two loops are considered equivalent (or homotopic) if one can be obtained from the 
other by a continuous deformation. All homotopic loops are grouped into one class 
and the set of all such classes is called the fundamental group and is denoted by �1.2 

(12)�1(M
3
2
) = �1(r

3
2
× IR3) = ��2 = S2.

Fig. 3  Schematic representation 
of a typical contractible loop q1 
and a typical non-contractible 
loop q2 on M3

2
 which is a doubly 

connected space. The two points 
marked with an X are the same 
point. The path q1 cannot be 
deformed continuously into the 
path q2 (Color figure online)

q
q1

2

x

x

1 When dealing with non-scalar quantum mechanics, i.e., when the wave functions are multiplets instead 
of one component objects as assumed in the discussion, appropriate higher-dimensional representations 
of �1(Md

N
) would be necessary.

2 In the set �1 one can define a product ⋅ in a very simple and natural way: if �1 and �2 are two classes 
with representatives path q1 and q2 , then �1 ⋅ �2 is the class whose representative is the path q1q2 (that is 
the path q1 followed by the path q2 ). It can be shown that this product furnishes �1 with a group structure.
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Thus, an element of �1(Md
N
) is simply the set of all loops in Md

N
 which can be contin-

uously deformed into each other. On the other hand, loops belonging to two different 
elements of �1(Md

N
) cannot be connected by a continuous transformation. Naturally, 

�(q�, q;�) has to be a real positive probability function.
In order for (2) to make sense as a probability amplitude, the complex weights 

�(�) cannot be arbitrary. In fact, since we want to maintain the usual rule for com-
bining probabilities,

the weights �(�) must satisfy,

for any �1 and �2 . Equation (14) can also be read as the statement that �(�) must be a 
one-dimensional unitary ( |�|2 = 1 ) representation of the fundamental group �1(Md

N
) 

[19]. To see which representations are possible, we have to specify better what is Md
N

 
and its fundamental group.

This means that we have to look for one-dimensional unitary representations �(�) 
of the fundamental group, i.e.,

or in the notation used by Wilczek [12], n = 4� and � = �∕2� where � is the wind-
ing number and � the relative angular momentum in units of ℏ quantized in units of 
� + integer in each sector �.

In d ≥ 3 , there are only 2 possible representations of the permutation group: the 
one corresponding to the bosonic statistics ( � = 0 mod 2) and the one corresponding 
to the fermionic statistics ( � = 1 mod 2). In d = 2 , one has to choose representa-
tions of the braid group (see chapter 2 of Ref. [9]) and the statistical parameter � can 
be arbitrary at least in principle.3 Particles with this property are called anyons. In 
d = 2 , it is not enough to specify the initial and final configurations to completely 
characterize the system; it is also necessary to specify how the different trajectories 
wind or braid around each other. In other words, the time evolution of the particles 
is important and cannot be neglected in d = 2 . This fact implies that in order to clas-
sify and characterize anyons, and the representations of the permutation group must 
be replaced by those of the more complicated braid group.

The following is always true (here t and t′ are two different imaginary times at 
which particles are found at the same spatial positions),

(13)�(q�, q;�) = ∫Md
N

dqo �(q
�, qo;to∕ℏ)�(qo, q;� − to∕ℏ),

(14)𝜒(𝛼1)𝜒
⋆(𝛼2) = 𝜒(𝛼1 ⋅ 𝛼2),

(15)�(�) = e−i�n�� , n� integer ,

3 There are restrictions on � coming from the topology of the two-dimensional space. For example for 
particles moving on a torus (or a 2D box with periodic boundary conditions), � can only be a rational 
number (see Sect. 3.4).
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where the symbol �ij denotes the azimuthal angle of particle j with respect to particle 
i and n is an integer. This can be interpreted by saying that to complete a loop in 
configuration space an integer number of exchanges is always necessary. And one 
can write (see chapter 2 of Ref. [9])

(x1
i
− x2

i
) being the Cartesian coordinates of the ith particle.

So, we can formally express

Notice that the functions �(�)
ij
(�) , where � represents an arbitrary braiding (see chap-

ter 2 of Ref. [9]) are in general very complicated and can be specified only when the 
dynamics of the particles is fully taken into account. However, the formal definition 
(18) may come useful when inserted into the density matrix expression (19). So that 
the expression for the diagonal of the density matrix gets the suggestive form,

Expression (2) tells us that instead of dealing with anyons governed with the Hamil-
tonian H , we can work with bosons whose dynamics is dictated by the new Hamilto-
nian H� = H + iℏ�

∑
i,j

d�
(�)

ij
(�)∕d� . In particular, we could treat fermions governed 

by an Hamiltonian H as bosons with a “fictitious” Hamiltonian 
H

� = H + iℏ
∑
i,j

d�
(�)

ij
(�)∕d� . Notice that this statistical interaction is very peculiar 

and intrinsically topological in nature (it is actually a total derivative). Its addition to 
the Hamiltonian H does not change the equations of motion, which are a reflection 
of the local structure of the configuration space, but does change the statistical prop-
erties of the particles, which are instead related to the global topological structure of 
the configuration space (it can be locally realized as a gauge theory with a 
Chern–Simons kinetic term).

Now, since �(q, q;�) has to be a real positive function as well as all the ��(q, q;�) 
one has to add the constraints

(16)
∑

i<j

[𝜃ij(t
�) − 𝜃ij(t)] = n𝜋,

(17)�ij = tan−1

(
x2
j
− x2

i

x1
j
− x1

i

)
,

(18)�(�) = exp

[
−i�

∑

i,j
∫

ℏ�

0

d�
d

d�
�
(�)

ij
(�)

]
.

ρ(q, q; β) =
α∈π1(M2

N )

χ(α)ρα(q, q; β)

=
α∈π1(M2

N )

–

–

qα( β)=q

qα(0)=q

e
− 1 β

0 dτ H(qα(τ), ˙qα(τ))+i ν i,j

dθ
(α)
ij (τ)

dτ Dqα .
(19)
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3  Periodic Boundary Conditions

The configuration space M of identical hard core two-dimensional particles has a 
non-trivial topology.

• If the particles are free to move in IR2 or in a finite L × L box, then the con-
figuration space is infinitely connected (see Fig. 1). Its fundamental group is 
the braid group whose representations are labeled by an arbitrary parameter � . 
This unusual statistics can be implemented on ordinary particles (for instance 
bosons) by the addition of a topological statistical interaction as we saw in Eq. 
(19).

• If the particles are free to move in a finite box with periodic boundary conditions, 
a torus, a compact Riemannian surface of genus 1, then only bosons and fermi-
ons are possible [9] if the multi-particle wavefunctions carry a one-dimensional 
(appropriate for scalar wave functions) unitary representation of the braid group. 
However, anyons are possible even on a torus provided that wave functions with 
many components are considered, as for example for spin one-half electrons. 
In this case, one has to look at higher-dimensional representations of the braid 
group which lead to the concepts of generalized fractional statistics and general-
ized anyons [20–23]. Now, only fractional statistics are possible and � = p∕q can 
only be a rational number, with p and q coprime integers and N = qn where n is 
a nonnegative integer. This is essentially due to the requirement to have nonzero 
winding numbers along the two periods (the two handles) of the torus: one peri-
odicity winding acts on a wave function with k components by multiplying all 
components by the same phase factor, while the other periodicity winding mix 
among themselves the components of the wave function (at the end of chapter 2 
of Ref. [9] the general case of a Riemannian surface of a generic genus is also 
made).

In order to avoid periodic boundary conditions, one could work on the surface of a 
sphere, in this case scalar anyons with fractional statistics will emerge [9].

So, this poses the following conceptual problem. If one is to simulate, for exam-
ple through the Monte Carlo technique, a system of identical hard core particles 
living in two dimensions, he should use, for the many body wave function of the 
system contained in a two-dimensional box of sides L1 and L2 , either the Born–von 
Karman periodic boundary conditions

(20)
∑

�∈�1(M
2
N
)

sin(�n��)��(q, q;�) = 0 ,

(21)
∑

𝛼∈𝜋1(M
2
N
)

cos(𝜈n𝛼𝜋)𝜌𝛼(q, q;𝛽) > 0.
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with Θ = 0 and � = (L1, L2) or the twisted boundary conditions [24], with Θ ≠ 0 , to 
mimic the thermodynamic limit. Then, the fractional statistics or the anyonic nature 
of the particles is necessarily changed by the topological change of the configura-
tional space. Moreover, as we will discuss in the conclusions the twisted boundary 
conditions, even if they do not alter the qualitative picture respect to the Born–von 
Karman boundary conditions, regarding the topological properties of the underly-
ing configurational space, they become essential in the description of anyons or the 
fractional QHE (see [9] chapter 4). We can in fact say that in the interchange of two 
particles each one of the two changes identity when winding across the boundary 
(22) as follows,

Since the discovery of the twisted boundary conditions by Chang Lin et al. in 2001 
to optimize the approach to the thermodynamic limit of a generic Monte Carlo sim-
ulation of a many-body system, we are unaware of their use in computer experiment 
for anyons as in Eq. (23).

Let us now reduce ourselves to the N = 2 case. We have seen that when the parti-
cles are free to move on all IRd , then the center of mass coordinate splits off in a triv-
ial way. Let us see what we can easily say about the configuration spaces of particles 
confined in a box (B) or in a periodic box (PB). We start with a one-dimensional 
space and then, study the two-dimensional one.

3.1  For a Box in d = 1 [1d‑B]

Call x1 ∈ [0, L] and x2 ∈ [0, L] the particles coordinates. In this case (see Fig. 4),

(22)�(�1,… , �j + �,…) = eiΘ∕2�(�1,… , �j,…), ∀ j = 1,… ,N

(23)�(�1,… , �j,… , �k,…) = eiΘ�(�1,… , �k,… , �j,…).

Fig. 4  In the plane (x1, x2) , the 
uniformly shaded region M1

2
 of 

Eq. (24) is simply connected. 
The slashed shaded region is 
the forbidden one (Color figure 
online)

1

x2

M1
2

L

L x0
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which is simply connected. So, only boson statistics is allowed.
We could, as well, have introduced the center of mass coordinate 

R = (x1 + x2)∕2 ∈]0, L[ and the relative coordinate r = x1 − x2 . Using this coordi-
nates, M1

2
= r1

2
×]0, L[ (see Fig. 5).

As expected again, M1
2
 is simply connected.

3.2  For a Box with Periodic Boundary Conditions in d = 1 [1d‑PB]

We now consider the case of particles on a circle of length L. Using the center of 
mass coordinate R = (x1 + x2)∕2 and the relative coordinate r = x1 − x2 , one sees by 
inspection that,

which is infinitely connected (as shown in Fig. 6 two loops with different winding 
around the missing point (−L, 0) = (L, L∕2) are homotopically inequivalent). So, 
anyons with arbitrary statistics � is allowed.

The same thing can be seen introducing the center of mass angle � and the rela-
tive angle � (see Fig. 7). The rectangle in the (�, �) plane defined by 0 ≤ � ≤ � and 
0 ≤ � ≤ 2� includes all possible configurations, except for the left and right edges 
where (0, �) and (�, 2� − �) both represent the same configuration. Because of this 
identification, the rectangle becomes a Möbious band which is still infinitely con-
nected. In this case, though even with a multi-component wave function the statistics 

(24)M1
2
= {(x1, x2) ∶ x2 ∈ [0, L], x2 < x1 ≤ L},

(25)
M1

2
= {(r,R) ∶ R ∈ [0, L∕2], 2R − L ≤ r ≤ 2R,

(2R,R) = (2R − L,R), (−r, 0) = (r, L∕2)}

− {(0,R) ∀R, (−L, 0), (0, L∕2)},

Fig. 5  Another view of M1

2
 

of Eq. (24), now in the plane 
(r, R) with R the center of mass 
coordinate and r the relative 
coordinate r. Again, the slashed 
region is the forbidden one 
(Color figure online)

1
2

L

L0 r

M

R
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must remain arbitrary and not fractionary as in the two-dimensional one since we 
have only one periodicity.

3.3  For a Box in d = 2 [2d‑B]

Using the same argument used for the [1d-B], we can say that M2
2
= r2

2
× [0, L]2 

where r2
2
 is a space with the same topology as the cone without the tip introduced 

in the case of particles without boundaries. The only difference being that the cone 
now does not extend to infinity but is finite and its height depends on L. So once 
again, since r2

2
 is infinitely connected, also M2

2
 is. And anyon statistics is allowed 

with arbitrary �.

M1
2

XX

X

X

R

r

L/2

−L L0

XX
q1

q2

Fig. 6  In the plane (r, R) with R the center of mass coordinate and r the relative coordinate r, we show 
the uniformly shaded region M1

2
 of Eq. (25) which is infinitely connected. The points labeled X are the 

same point. The points labeled XX are the same point. The slashed shaded regions are the forbidden ones. 
The path q1 cannot be deformed continuously into the path q2 (Color figure online)
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φ
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φ

2π

π

X

X
q

q

1

2 M

Fig. 7  On the right, we show the meaning of the angles � , between the two particles 1 and 2 on the 
circle, and � , the polar angle to the line joining the center of the circle to the center of mass of the two 
particles. The uniformly shaded region M1

2
 of Eq. (25) is infinitely connected. The points labeled X are 

coincident. The slashed shaded regions are the forbidden ones. The path q1 cannot be deformed continu-
ously into the path q2 (Color figure online)
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3.4  For a Box with Periodic Boundary Conditions in d = 2 [2d‑PB]

In this case, we can say that something similar was happening from going from 
the 2d plane (M infinitely connected) to the 3d space (M doubly connected). Now, 
in [1d-PB] M is infinitely connected and in [2d-PB] M is doubly connected. We 
split again M2

2
 into the product of the center of mass configuration space and of 

the two impenetrable particles relative coordinates one, r2
2
 . It turns out that now, 

due to the periodic boundary conditions, r2
2
 is a cone without the tip, of finite 

height, as in Fig. 1, and with the end points of a diameter of the base identified. 
This is a doubly connected space. All this is only true if we consider scalar wave 
functions, i.e., one-dimensional representations of the fundamental group of the 
configuration space. For wave functions with many components, the generators of 
the representations of the fundamental group of the configuration space are such 
that [9] � = p∕q a rational number, with p and q coprime numbers and a restric-
tion on the total number of particles, N = qn , where n is a nonnegative integer. 
For an extensive discussion of anyons on compact surfaces and on the torus in 
particular, we refer the reader to the review by Lengo and Lechner [25].

4  Conclusions

Twisted boundary conditions play a relevant role in the anyons problem where 
the topology of the underlying configuration space determines the statistics of 
the particles. We review various cases. For scalar, many body wave functions on 
the segment or the infinite line one can have only bosons, on the circle one can 
only have anyons with arbitrary statistics, on the square or the infinite plane one 
can also have only anyons with arbitrary statistics, and on the torus which has 
two periodicities only bosons and fermions are allowed as on the infinite three-
dimensional Euclidean space. In Sect. 3, we gave an original proof of these differ-
ent behaviors for just a two-body system. This is enough to determine the anyonic 
symmetry of the many-body wave function as we discussed in Sect. 2.2, but one 
cannot exclude other kinds of three and higher body symmetries where it is nec-
essary to substitute �ij of Eq. (17) with a different �ijk… . We gave proofs of these 
circumstances based on the geometrical topological properties of the configura-
tional space in each case, which we regard as the simplest way to proceed.

If we allow for a many components wave function on the torus, we may have 
anyons but with only fractional statistics which proved to give an interpretation 
for the fractional QHE. In this case, a series of new states of matter emerge as 
incompressible quantum liquids [26, 27] around which the low-energy excita-
tions are localized quasi-particles with unusual fractional quantum numbers, i.e., 
anyons. The Laughlin variational ground-state wave functions requires the statis-
tics, � , to be an odd integer m, whereas the excited states require it to be rational. 
Laughlin chooses the trial ground-state wave function of the Bijl–Dingle–Jastrow 
product form
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where �0 =
√
ℏc∕eB is the magnetic length, B the magnetic field orthogonal to the 

metallic plate, zi is the complex coordinate of the i-th electron and Nm is a nor-
malization factor. Since m is an odd integer, � is totally antisymmetric, and so it 
describes ordinary fermions. The prefactor (zi − zj)

m is also of the Jastrow type: it 
has a zero of order m at coincident points (zi = zj) , showing that electrons tend very 
strongly to repel each other in a way that is appropriate to minimize the Coulomb 
interaction. If zi goes around zj by an angle Δ� , the wave function acquires a phase 
eimΔ� , as if each particle carried m units of flux. This allows Laughlin to use the fact 
that the |�m|2 can be interpreted as the Boltzmann factor e−�� of a One Compo-
nent Plasma of classical particles of charge Q = m living in two dimensions where 
the neutralizing background has a surface charge density � = m∕2��2

0
 at an inverse 

temperature � = 2∕m . The coupling constant of the plasma is Γ = �Q2 = 2m2 , and 
its properties are available exactly analytically at the special value of the coupling 
constant Γ = 2 [28–30] when the two-dimensional electron gas corresponds to a full 
Landau level m = 1 (see Ref. [9] chapter 8).

A word of caution when thinking at the physical implications of all this is 
nonetheless necessary. From a purely conceptual point of view, the fact that in 
order to have a fractional statistics one has to impose twisted periodic bound-
ary conditions that are an artificial means to approach the thermodynamic limit 
and have no physical meaning sheds some doubts on the relevance of the anyonic 
theory on the interpretation of the fractional QHE. From the point of view of the 
numerical experiment, the presence of a magnetic field implies that the ground 
state wave function will, in general, be complex valued and in order to deal with 
the symmetry given by the anyonic statistics one should use methods similar to 
the ones used in Ref. [31, 32]. Also, we proposed to combine these methods with 
the twisted boundary conditions first employed in 2001 by Chang Lin et al. [24] 
for a generic many-body system. It would be desirable to perform the simulation 
on a sphere with a Dirac magnetic monopole at the center [33] in order to be 
able to simulate scalar anyons with fractional statistics, without the necessity of 
implementing any sort of boundary conditions.

Another issue in disfavor of the description of the physically observed QHE 
is the fact that in a laboratory the electrons will surely not be exactly living in a 
two-dimensional world, but one deals rather with a quasi-two-dimensional, very 
very thin, metallic layer [34] at the interface between two different semiconduc-
tors or between a semiconductor and an insulator even if the low temperature and/
or the strong magnetic field freezes the motion along the direction perpendicular 
to the layer (something similar as explained in the satirical novella by the English 
schoolmaster Edwin Abbott: “Flatland: A Romance of Many Dimensions” first 
published in 1884 by Seeley & Co. of London). This of course would modify also 
the Coulomb potential of interaction between the electrons from one ∝ − log(r∕L) 
to one ∝ 1∕r , with r the separation between electrons, which are in any case 

(26)𝜓m = Nm

�

i<j

(zi − zj)
me

−
1

4�2
0

∑
i �zi�2

,
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both divergent at r = 0 . Naturally, the Coulomb repulsion is essential to give the 
incompressibility condition avoiding two particles to overlap.

The real experiment is too complicated to describe in its completeness so one 
has to resort to approximations and the approximation of considering the electrons 
as “living” in a two-dimensional world with periodic twisted boundary conditions 
seems to be an effective one. There are many experiments in the field. A mostly 
interesting one is described in Ref. [35] where it is shown that the sign of the Hall 
effect in the transport properties of doped lanthanum manganites films for small 
polaron [36, 37] hopping can be “anomalous.” A small polaron based on an electron 
can be deflected in a magnetic field as if it was positively charged and, conversely, 
a hole-based polaron can be deflected in the sense of a free electron. Measurements 
of the high-temperature Hall coefficient of manganite samples reveal that it exhib-
its Arrhenius behavior and a sign anomaly relative to both the nominal doping and 
the thermoelectric power. The results are discussed in terms of an extension of the 
Emin–Holstein theory of the Hall mobility in the adiabatic limit.

There are now several proposed experiments aimed at identifying the existence 
of non-Abelian statistics in nature. Non-Abelian phases are gapped phases of matter 
in which the adiabatic transport of one excitation around another implies a unitary 
transformation within a subspace of degenerate wavefunctions which differ from 
each other only globally [38].

Another more recent experimental interest in anyons is for topological quantum 
computation [39, 40]: Systems exhibiting non-Abelian statistics can store topologi-
cally protected qubits [41].
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