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We present a path integral Monte Carlo method which is the full quantum analogue of the Gibbs
ensemble Monte Carlo method of Panagiotopoulos to study the gas-liquid coexistence line of a clas-
sical fluid. Unlike previous extensions of Gibbs ensemble Monte Carlo to include quantum effects,
our scheme is viable even for systems with strong quantum delocalization in the degenerate regime
of temperature. This is demonstrated by an illustrative application to the gas-superfluid transition of
4He in two dimensions. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4895974]

I. INTRODUCTION

Monte Carlo (MC) simulations1 in the Gibbs ensem-
ble (GEMC) of Panagiotopoulos2 have now been extensively
used for several years to study first order phase transitions in
classical fluids. According to the GEMC method, the simula-
tion is performed in two boxes each of which contains one of
two coexisting phases. Equilibration in each phase is guaran-
teed by moving particles within the respective box. Equality
of pressures is satisfied in a statistical sense by expanding the
volume of one of the boxes and contracting the volume of
the other. Chemical potentials are equalized by transferring
particles from one box to the other. This procedure avoids ei-
ther the laborious search for matching free energies calculated
separately for each phase, or the simulation of a system large
enough to contain both phases and their interface.

Notwithstanding the isomorphism between quantum par-
ticles and classical ring polymers underlying the path integral
formulation of quantum statistical physics,3 and the recog-
nition that path integral Monte Carlo (PIMC) is a tremen-
dously useful numerical tool4 to extract unbiased statistical
properties of quantum systems, the development of Monte
Carlo methods for quantum systems is more complex, and
correspondingly less complete, than for classical ones. Putting
aside the well known sign problem for fermions5 an important
aspect is the development of methods able to simulate a given
quantum system in different statistical ensembles.

Recently, a new approach to continuous space PIMC sim-
ulation was devised6 which makes use of the “Worm Algo-
rithm” (WA) previously employed to study lattice models.7

The WA is formulated in an enlarged configuration space,
which features the possible presence of an open world-line,
the worm. It can simulate a system either in the grand canon-
ical or the canonical ensemble, and it enjoys a favorable
scaling of the computational cost with the system size for
the calculation of properties related to the formation of long
permutation cycles,8 such as the superfluid fraction or the
one-body density matrix.
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It is the purpose of the present work to exploit the WA6

to obtain an algorithm that is the full quantum analogue of
the GEMC and thus can be used to study the gas-liquid phase
transition of any (bosonic) quantum fluid.9 Several quantum
generalizations of GEMC have appeared. However, some of
them only consider particles which have internal quantum
states but are otherwise classical;10 others11 are limited to
particles isomorph to relatively compact classical polymers
(hence, high enough temperature and/or small enough quan-
tumness); none of them features the structure of particle ex-
changes which underlies Bose (or Fermi) statistics. We apply
the quantum Gibbs ensemble Monte Carlo (QGEMC) method
to the liquid-gas coexistence of two-dimensional 4He where
strong quantum effects, including superfluidity, are present.

II. CLASSICAL GIBBS ENSEMBLE MONTE CARLO

We begin with a brief summary of the Gibbs Ensemble
Monte Carlo method that we deem useful for the subsequent
quantum generalization. A detailed presentation is given in
Ref. 12.

The system comprises a box of volume �1 containing N1
particles and a box of volume �2 containing N2 particles. The
temperature T, the total number of particles N = N1 + N2,
and the total volume � = �1 + �2 are fixed, and there is
no interaction between particles enclosed in different boxes.
Starting from the partition function for the Gibbs ensemble

ZG(N,�, T ) = 1

�

N∑
N1=0

∫
d�1Z(N1,�1, T )Z(N2,�2, T ),

(1)
where Z is the canonical partition function, the probability
density for the coordinates R = {r1, . . . , rN} of the particles,
the number N1, and the volume �1 can be cast in the form

PN,�,T (R,N1,�1) ∝ �
N1+1
1 �

N2+1
2

N1!N2!
e−βV (R). (2)

0021-9606/2014/141(11)/114110/6/$30.00 © 2014 AIP Publishing LLC141, 114110-1
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Here, β = 1/kBT and the potential energy in the Boltzmann
weight, assuming a central pair potential v(r), is

V (R) =
N1−1∑
i=1

N1∑
j=i+1

v(rij ) +
N−1∑

i=N1+1

N∑
j=i+1

v(rij ). (3)

The Monte Carlo simulation proceeds via three kinds of
moves:

(1) Displace the position ri of a randomly selected parti-
cle within its own box; this is done as in standard canonical
ensemble simulations.

(2) Change the volumes; this is done by uniformly sam-
pling a displacement of the quantity ln(�1/�2), with � kept
fixed.

(3) Exchange particles; this is done by transferring a ran-
domly chosen particle to a random position in the other box.

The acceptance probabilities are obtained imposing de-
tailed balance.12 After equilibration, provided N/� is within
the coexistence region at the temperature T, each of the two
boxes will contain one of the coexisting phases.

III. QUANTUM GIBBS ENSEMBLE MONTE CARLO

The QGEMC is based on the Path Integral Monte Carlo
method in the Worm Algorithm implementation. We refer to
the literature4, 6 for a full account of these techniques, giving
here only a brief discussion of some aspects relevant to the
quantum generalization of the classical GEMC.

A. Path integral Monte Carlo

We consider an assembly of N identical particles obeying
Bose statistics. In the position representation, the canonical
partition function is

Z = 1

N !

∑
P

∫
dRρ(R,PR; β), (4)

where ρ(R, R′; β) = 〈R|e−βH|R′〉 is the thermal density matrix
for distinguishable particles, and the sum over the permuta-
tions P accounts for Bose symmetry. The density matrix can
be expressed in a form amenable to Monte Carlo simulation
in terms of discretized path integrals

ρ(R,R′; β) �
∫

dR1 . . . dRK−1

K∏
j=1

ρ̃(Rj−1, Rj ; ε), (5)

with R0 = R, RK = R′, and {R1, . . . , RK − 1} a sequence (path)
of intermediate configurations. An adjacent pair {Rj − 1, Rj}
is called a link. In Eq. (5), the factors ρ̃ have an argument
ε = β/K which corresponds to a temperature K times higher
than T, and for high temperature the unknown many-body
density matrix can be accurately approximated by an explicit
expression of the general form

ρ̃(R,R′; ε) = ρF (R,R′; ε)e−U (R,R′;ε), (6)

where

ρF (R,R′; ε) = (4πλε)−dN/2
N∏

i=1

e−(r
i
−r′

i )
2/4λε (7)

is the density matrix for N non-interacting particles in d spa-
tial dimensions, and the function U takes into account the ef-
fect of correlations. In the limit ε → 0, ρ̃(R,R′, ε) approaches
ρ(R, R′, ε) and the approximate equality (5) becomes
exact.

For each particle, Eq. (5) defines a trajectory, or world
line (WL), {ri; 0, ri; 1, . . . , ri; K}, where the bead ri; j is the
position of the ith particle at the jth “time” discretization in-
dex. In the calculation of thermal averages, 〈A〉 = TrρA/Z, the
presence of the traces and the Bose symmetry of Eq. (4) re-
quire periodic boundary conditions in time, ri;K = rPi;0: the
trajectory of a particle ends in the initial position of either the
same or another particle, according to the permutation cycles
contained in the permutation P . All the interlinked trajecto-
ries of a permutation cycle of k particles form a single WL
with kK steps, so that all WLs are closed. The WL of a single
particle has a spatial extent limited by the thermal wavelength,
while the WL of a long permutation cycle can span the whole
system.

The simulation proceeds by sampling a density proba-
bility proportional to the integrand of Eq. (5). Specific tech-
niques are devised to update not only the particle positions
along the WLs, but also the permutations.

The WLs can be mapped onto classical ring polymers,
with peculiar interactions defined through Eq. (5) by viewing
the integrand as a Boltzmann weight. Thus, it seems possi-
ble to apply the GEMC method to the quantum system as
well. However, an issue arises with the exchange move: a
quantum particle corresponds, in the classical mapping, to
a whole polymer, and the acceptance rate for transferring a
polymer to the other box can be expected to be low, partic-
ularly at low temperature when the thermal wavelength in-
creases and the spatial extension of the polymers grows. The
problem is further compound by the presence of interlinked
trajectories belonging to a permutation cycle. This is why
quantum applications of GEMC have been limited to rela-
tively high temperature and/or relatively low quantumness.11

We will show how to overcome these difficulties using the
WA.

B. Worm algorithm

The WA enlarges the configuration space: along with
the closed WLs of Sec. III A, there are configurations with
an open WL in which one particle is created in rM at time
jMε and destroyed in rI at a later time jIε. The difference
jI − jM is intended modulo K, and the open WL can belong
to a permutation cycle involving other particles. The points
rI and rM are called Ira and Masha, respectively, and the
WL connecting them is called the worm. Configurations with
only closed WLs belong to the “Z sector” and contribute to
the partition function. Configurations with a worm belong to
the “G sector” and contribute to the one-body Green func-
tion g(rM, rI ; (jI − jM)ε)/Z. All physical properties, with
the exception of the Green function, are calculated only on
configurations of the Z sector. The full set of configurations
corresponds to the extended partition function

ZW = Z + Z′, (8)
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where Z can be either the canonical or the grand partition
function,

Z′ = C
∑
jI ,jM

∫
drIdrMg(rM, rI ; (jI − jM)ε), (9)

and the arbitrary parameter C defines the relative weight of
the Z and G sectors. The discretized path integral expression
of Eq. (9) is obtained in close analogy with Sec. III A in terms
of ρ̃(Rj−1, Rj ; ε).

The simulation proceeds via a set of local moves – the
complementary pairs Open and Close, Insert and Remove,
Advance and Recede, and the self-complementary Swap –
which guarantee ergodic sampling of the enlarged configura-
tion space by switching between the Z and the G sectors and
displacing the coordinates of the particles.6

The usefulness of the WA for the implementation of the
QGEMC can be appreciated by considering the process of
adding a particle to the system (we assume here that Z is the
grand partition function): starting from the Z sector, a worm
may be inserted; once in the G sector, the worm may advance,
possibly swap with existing closed WLs, and eventually get
closed, thus switching back to the Z sector with one more
particle. Each single move is a local update that involves only
a limited number of time steps, so that the acceptance rate can
be high even in a dense system.

C. Gibbs ensemble

We consider N1 particles in a volume �1 and N2 particles
in a volume �2, with �, N, and T fixed (see Sec. II). The con-
figurations of the system in the Gibbs ensemble are distributed
according to the partition function ZG of Eq. (1), with each of
the canonical partition functions Z of the two subsystems ex-
pressed as discretized path integrals with closed WLs, as in
Sec. III A. These configurations define the Z sector.

Following the strategy of the WA we enlarge the config-
uration space allowing for open WLs, while strictly enforcing
the constraint of fixed N: whenever there is a worm in box 1,
with Masha at rM1;j and Ira at rI1;j ′ , there is a worm in box 2
as well, with Masha at rM2;j ′ and Ira at rI2;j , as schematically
illustrated in Fig. 1. These configurations define the G sector.
In the G sector, the number of particles in box α (α = 1, 2)
varies between Nα and Nα − 1, with N1 + N2 = N + 1, and
the total number of particles within each link is N.

The extended partition function is ZW = ZG + Z′, where

Z′ = 1

�

∑
N1

∫
d�1C

K∑
j,j ′=1

′F1(j, j ′)F2(j ′, j ). (10)

The primed summation excludes the terms with j = j′ to make
sure there is a worm per box in the G sector, and the function
Fα – the integral of Eq. (9) for box α – is expressed in terms
of density matrices as

Fα(j, j ′) = 1

Nα!

∑
P

α

∫
ρ({Rα, rMα},Pα{R′

α, rIα}; τj,j ′ )

×ρ(R′
α, Rα; τj ′,j )dRαdR′

αdrMαdrIα. (11)

FIG. 1. Schematic illustration of open WLs in the G sector.

Here, the pair {Rα, rMα} indicates the coordinates of Masha
and of all the other particles of box α at time index j (the
first argument of Fα) and {R′

α, rIα} the coordinates of Ira and
of the other particles at j′. The argument τj,j ′ of the density
matrices ρ is the positive interval from jε to j′ε – possibly
wrapping around the periodic boundary condition, i.e., τj,j ′

= [(j ′ − j + K)modK]ε. Finally, the density matrices are
expanded in discretized path integrals using the high temper-
ature approximation ρ̃ as in Sec. III A.

The probability density for all the coordinates X in the
system, the number N1 and the volume �1 is13

PN,�,T (X) ∝ Cδ
G

K∏
j=1

ρ̃(Xj−1, Xj ; ε), (12)

where δG is 1(0) in the G(Z) sector, Xj indicates the positions
of all the particles in either box at time jε, and the dependence
on N1 and �1, as well as all possible permutations of parti-
cle labels, are implicitly contained in the configuration X. No
sums over permutations appear in P because the symmetriza-
tions of Eq. (11) or (4) are carried out concurrently with the
Monte Carlo integration over the coordinates, through updates
of the permutation cycles.

We next describe a set of moves which sample the con-
figuration space with probability density PN, �, T(X). They are
the standard moves of PIMC and the WA, in some cases com-
bined in pairs to preserve the two-worm structure of the G sec-
tor illustrated in Fig. 1, and the volume change move specific
of the GEMC method; the particles exchange move of GEMC
builds spontaneously through a sequence of WA moves. The
acceptance probabilities are obtained by enforcing detailed
balance according to the generalized Metropolis algorithm12

(if the current configuration is in a sector where the proposed
move is not applicable, the move is rejected immediately).

(1a) Open-insert. This move, schematically illustrated in
Fig. 2, is applicable only in the Z sector. It switches from the
Z to the G sector by opening an existing closed WL in one
box and inserting a new open WL in the other box. A particle
is picked randomly, and the links of its WL from j to j + M
are removed. The time index j is uniformly sampled in [1, K],
and the number of removed links M is uniformly sampled in
[1, M̄], where M̄ < K is a parameter of the simulation which
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FIG. 2. Schematic illustration of the open-insert move. Two worms are cre-
ated by removing the white beads and inserting the grey beads.

controls the size of the move. Let α be the label of the other
box. The initial bead rMα;j of the new WL is placed at a po-
sition r0 randomly sampled in �α , and M further beads are
sampled from

∏M
ν=1 ρ0(rν−1, rν ; ε), where

ρ0(r, r′; ε) = (4πλε)−d/2e−(r−r′)2/4λε (13)

is the one-particle free propagator. The acceptance probability
is pop−in = min{1, e�

U πop−in}, where

πop−in = CM̄K�αN

2ρ0(rIγ , rMγ ; Mε)
(14)

and �U = ∑M
ν=1[U (Xν−1, Xν ; ε) − U (X∗

ν−1, X
∗
ν ; ε)] is the

change of the interacting part of the action U between the ini-
tial configuration X and the proposed configuration X∗.

(1b) Close-remove is the complementary move of open-
insert. A box – say γ – is selected at random. If M

= τIγ,Mγ /ε > M̄ , the move is rejected. Otherwise, a WL
of M links connecting r0 = rIγ to rM = rMγ is sampled

from
∏M

ν=1 ρ0(rν−1, rν ; ε). If the open WL in the other box
contains more than M̄ links the move is rejected, otherwise
the worm is removed. The acceptance probability is pcl−rm
= min{1, e�

U /πop−in}.
(2) Advance-recede. This move is self-complementary, as

are all the remaining moves. It applies only to the G sector,
and we refer to Fig. 1 for a representation of the initial config-
uration. A box – say γ – is selected at random. An integer M is
uniformly sampled in [1, M̄] and a time direction is selected
at random. If the time direction is positive, a new portion of
WL sampled from a product of M free-particle propagators is
added in box γ starting from rIγ , and a corresponding, M-link
portion of the open WL existing in box α is removed, starting
from rMα . If the time direction is negative, the new portion
of WL is added in box γ starting from rMγ and going back-
wards in time, and the WL in box α is shortened starting from
rIα . The move is rejected if M ≥ τIγ,Mγ /ε (this restriction
could be avoided using more elaborate combinations of the
WA moves). The acceptance probability of advance-recede is
pad−re = min{1, e�

U }.

(3) Swap. This move applies only to the G sector. A box
is selected at random, and within the chosen box the move
proceeds in the same way as in the WA.6

(4) Volume change. We choose to apply this move only
to configurations of the Z sector. For the classical GEMC up-
date of the volumes, it proves convenient to make the depen-
dence on N1 and �1 explicit. This is achieved12 by rescaling
all lengths in box α by �

−1/d
α and formally performing the

Monte Carlo integration over the rescaled coordinates �(X).
Furthermore, the move is usually implemented12 by changing
the quantity ln(�1/�2), rather than �1 itself, by an amount
uniformly sampled in [−��,��] with �� a parameter which

controls the size of the move. A factor �
N1
1 �

N2
2 appears in

PN, �, T as a result of rescaling the coordinates, and another
factor �1�2 as a result of updating the logarithm of the vol-
ume (cf. Eq. (2)). In the quantum case, we adopt the same
changes of variables. Since each particle is mapped onto K
beads, each of which gets rescaled coordinates, the probabil-
ity density is

PN,�,T (�,N1,�1) ∝ �
KN1+1
1 �

KN2+1
2

×
∏
j

ρ̃(Xj−1(�), Xj (�); ε). (15)

The acceptance probability for a move from �1 to �∗
1 is

pvol = min

{
1,

(
�∗

1

�1

)KN1+1 (
�∗

2

�2

)KN2+1

e�
S

}
, (16)

where �S is the change of the full action between the initial
configuration X and the proposed configuration X∗

�S = −
K∑

ν=1

ln[ρ̃(Xν−1, Xν ; ε)/ρ̃(X∗
ν−1, X

∗
ν ; ε)]. (17)

The proposed configuration is X∗ = (�∗
α/�α)1/dX, with

α = 1 or 2 as appropriate to the particle index of each compo-
nent of X. Hence, both the equal-time interparticle distances,
|ri; j − rk; j|, and the single-particle displacements along the
WL, |ri; j − 1 − ri; j|, are modified upon volume changes. This
prescription departs from that recommended for classical sys-
tems of composite particles,12 where only the center of mass
follows the variation of the volume while the internal struc-
ture remains unchanged (in the quantum analogue, only the
centroid of each ring polymer would change while the size
and shape of the polymers would stay fixed11). The reason for
the prescription chosen here is that for polymers interlinked
through permutation cycles the equal-time interparticle dis-
tance and the single-particle paths are not independent.

In our implementation, we also include moves which
wiggle an existing portion of a WL, or displace the whole
WL of a particle. These moves are standard in PIMC4 and
since they are not strictly needed for the QGEMC we do not
describe them here.

IV. TWO-DIMENSIONAL 4He

The phase diagram of 4He in two dimensions has been
studied in Ref. 14 by PIMC simulations of individual phases
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FIG. 3. Data trace of the densities of the gas (blue) and the liquid (red) in the
initial stages of the simulation for T = 0.5 K.

for many values of density and temperature. A gas-liquid co-
existence region is found below 0.87 K. At these tempera-
tures, on account of the large De Boer parameter of 4He,
� = 0.429,9 quantum exchange of particles is an important
effect:4, 8 in the thermodynamic limit the normal-superfluid
transition temperature at saturated vapour pressure is 0.65 K,6

and for finite systems of a few hundred particles the superfluid
fraction is non-zero even for T = 1 K. Therefore, the gas-
liquid coexistence of two-dimensional 4He is a telling test of
the QGEMC algorithm for a degenerate quantum system. An
application to a square well model and 4He in three dimen-
sions has also appeared.15

We simulate a two-dimensional system of N = 64 4He
atoms distributed between two square boxes with periodic
boundary conditions. Within each box, the atoms interact with
the HFDHE2 pair potential.16 We use the primitive approxi-
mation

ρ̃(R,R′; ε) = ρF (R,R′; ε)e−ε[V (R)+V (R′)]/2 (18)

to the high temperature density matrix, with ε = 0.002 K−1.
The acceptance rate of the moves can be varied by tuning the
relevant parameters. In this calculation, we set M̄ = 125, with
acceptances between 35% and 75% for the close-remove,
advance-recede, swap and wiggle moves, but only a few per-
cent for the open-insert move. The acceptances of the volume
move are between 20% and 40% with �� = 10−2, across the

0.00

0.01

0.02
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0.04

0.05

 3800  3850  3900  3950  4000

n 
(Å

 −
2 )

Monte Carlo time

T=0.75  K box 1
box 2

FIG. 4. A portion of the data trace of the densities for the simulation at
T = 0.75 K, showing an exchange of identity between the two boxes.

TABLE I. The densities ng and nl of the coexisting gas and liquid phases as
a function of the temperature T.

T (K) ng (Å−2) nl (Å−2)

This work
0.125 <10−6 0.0422(2)
0.250 0.00009(2) 0.0424(4)
0.500 0.0016(2) 0.0416(4)
0.750 0.0106(6) 0.0396(7)
0.875 0.0209(9) 0.0343(10)

Ref. 14
0.250 0.000(2) 0.044(2)
0.500 0.000(2) 0.044(2)
0.750 0.009(2) 0.043(2)
0.860 0.020(2) 0.030(2)

whole temperature range. We also adjust the parameter C to
maintain the fraction of configurations in the Z sector between
0.15 and 0.55. In principle, a different value of M̄ should be
used for each move, and all these parameters, as well as the
relative frequency of the moves, should be optimized by max-
imizing the efficiency. We study the temperature range be-
tween 0.125 K and 1 K. For each temperature, the simulation
starts from a configuration with boxes of equal volume con-
taining 32 atoms each at a density 0.025 Å−2.

After equilibration, deep in the subcritical temperature
regime one of the boxes contains a gas of very low den-
sity ng, and the other a superfluid liquid with a density nl
close to the equilibrium density of the system at T = 0 (see
Fig. 3). For temperatures closer to the critical point, ng and
nl approach each other, and we frequently observe that the
two boxes exchange identity, i.e., the phase of the system in
each box switches back and forth between gas and liquid (see
Fig. 4). In this case, the density has a bimodal distribution
peaked at the values ng and nl of the coexisting phases. This
bimodal distribution can be obtained in a grand canonical sim-
ulation of a single box, but this requires a fine tuning of the
chemical potential.17 For T = 1 K, the two peaks merge into
a single gaussian centered at the average density 0.025 Å−2.

Our results for the densities ng and nl of the coexisting
phases are listed in Table I and displayed in Fig. 5. They com-
pare favorably with the results of Ref. 14. For each T, the
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FIG. 5. The binodal line of 4He in two dimensions. Black points: QGEMC.
Blue points: Ref. 14. Red line: extrapolation of the QGEMC results to the
critical point (red triangle).
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TABLE II. The superfluid fraction ns in the coexisting gas and fluid phases
as a function of T.

ns

T (K) Gas Liquid

1.000 0.032(1)
0.875 0.14(3) 0.36(2)
0.750 0.06(3) 0.63(3)
0.500 0.0014(5) 0.938(7)
0.250 <10−3 0.963(10)
0.125 0 0.985(16)

latter are obtained from an integral of the isothermal pressure
calculated in the canonical ensemble for several values of the
density across the coexistence region; the QGEMC method is
simpler because ng and nl are obtained with a single simu-
lation, either directly or via the analysis of a bimodal distri-
bution. Each of the present QGEMC calculations took ∼300
CPU hours on a 2 GHz processor. If needed, the efficiency
could be significantly improved using a better approximation
to the high temperature density matrix.4

The boundary of the gas-liquid coexistence region is
called the binodal line. It can be extrapolated to the crit-
ical point (CP) using the law of “rectilinear diameters,”18

ρ l + ρg = 2ρc + a|T − Tc|, and the expansion19 ρl − ρg

= b|T − Tc|β1 (|T − Tc| + c)β0−β1 . Here, β1 = 1/2 and β0
= 1/8, while ρc, Tc, a, b, and c are fitting parameters. We
find ρc = 0.028 Å−2 and Tc = 0.90 K.

Finally, we list in Table II the winding number estimator8

of the superfluid fraction ns for the two phases as a function
of the temperature. A non-zero value on the liquid branch of
the binodal over the full range of temperatures considered is
a clear indication of the importance of quantum exchanges.
On the gas branch of the binodal a finite superfluid fraction
also appears, but only at T � 0.5 K, where the density begins
to increase significantly entailing a corresponding increase of
the degeneracy temperature (although, as mentioned, a finite
value of ns for T > 0.65 K is a finite size effect6).

V. CONCLUSIONS

We have presented the QGEMC method, a full quantum
extension of classical Gibbs Ensemble Monte Carlo based

on the Worm Algorithm. The method is demonstrated for
the binodal of 4He in two dimensions, a physical property
of a strongly quantum system in the degenerate temperature
regime. Good agreement is found with the results of previous
PIMC simulations in the canonical ensemble. In analogy with
applications of GEMC to classical fluids,20–22 the QGEMC
method offers a convenient approach for problems such as
gas-liquid coexistence in quantum systems and phase equilib-
ria in quantum mixtures.
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