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Two theories for associating fluids recently used to study clustering in models for self-assembling
patchy particles, Wertheim’s and Bjerrum-Tani-Henderson theories, are carefully compared. We
show that, for a fluid allowing only for dimerization, Wertheim theory is equivalent to the Bjerrum-
Tani-Henderson theory neglecting intercluster correlations. Nonetheless, while the former theory is
able to account for percolation and condensation, the latter is not. For the Bjerrum-Tani-Henderson
theory we also rigorously prove the uniqueness of the solution for the cluster’s concentrations
and the reduction of the system of equations to a single one for a single unknown. We carry
out Monte Carlo simulations of two simple models of dimerizing fluids and compare quantita-
tively the predictions of the two theories with the simulation data. © 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4892878]

. INTRODUCTION

Recent advances in the experiments and modeling of
patchy colloids,"? i.e., colloidal particles whose interaction
is dominated by the presence of selective, short range inter-
action sites on their surface, have renewed interest in theories
able to describe liquid and vapour phases of associating fluids.

Fluid phase theories able to cope with the strong attrac-
tions of associating fluids have been developed starting from
the seventies, when hydrogen bond in molecular liquids was
a prototype problem. Two of the approximations developed
a few decades ago, namely, the approach developed by Tani
and Henderson,? extending Bjerrum’s theory” for electrolytic
solutions, and the more ambitious statistical mechanics ap-
proach by Wertheim® have been recently applied to the study
of simple models of patchy colloids.>'® The novelty intro-
duced by applications to self-assembling colloids is the huge
variety of interactions which can be engineered and conse-
quently the richness of the behaviors as far as the cluster pop-
ulation and its dependence on the thermodynamic state are
concerned. Both approaches identify in the fluid and predict
populations of suitably defined clusters.

In both theories, a cluster is defined on the basis of bond-
ing in configuration space. For example, if we describe the
fluid, as made by particles interacting with a certain pair-
potential ¢(12) between particles 1 and 2, we may consider
two particles as bonded whenever their pair-potential is less
than a given negative value —¢, ;. Clusters made of one par-
ticle are called “monomers,” the ones formed by two parti-
cles “dimers,” the ones formed of three particles “trimers,”

. and the ones formed by a higher but small number of par-
ticles “oligomers.” A cluster made of a number i of particles
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can also be denoted as an i-mer. If we measure the concen-
trations of the i-mers in an associating fluid we will find that
these are functions of the thermodynamic state: The temper-
ature T and the density p of the fluid. One can give various
definitions of a cluster?” either of a geometrical nature or of a
topological one, depending on the spatial arrangement of the
bonded particles. A more physical approach would require to
introduce the concept of physical cluster’!-?? but virtually all
the existing calculations have been based on clusters defined
in configuration space.

In this work we will compare Wertheim’s theory® and the
one of Bjerrum-Tani-Henderson (BTH).>* The former one
starts from a thorough theoretical analysis, from which it is
possible to derive a thermodynamic perturbation theory. Here,
we will only discuss the first order term. At high temperature
the associating fluid reduce to the “reference” fluid that can
also be considered as the one obtained from the associating
fluid sending to zero all attractions. The theory is only appli-
cable when some “steric incompatibility” conditions are ful-
filled by the associating fluid. The latter starts already by the
description of the associating fluid as a mixture of n_ differ-
ent species of oligomers where the numbers N; of i-mers are
allowed to vary subject to the constraint of a fixed total num-
ber of particles. One only assumes that the canonical partition
function as a function of all the N,, the volume and the temper-
ature be factorisable into the product of n, intra-cluster parti-
tion functions and an inter-cluster partition function. More-
over the clusters are assumed to interact weakly with each
other.

We will show that for n, = 2 Wertheim theory coin-
cides with the Bjerrum-Tani-Henderson theory when the clus-
ters are described as an ideal gas. Bjerrum-Tani-Henderson
theory, on the other hand, allows to improve on this first
level of approximation since one can always build better ap-
proximations to describe the inter-cluster partition function.

© 2014 AIP Publishing LLC
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In this work we will only consider the Carnahan-Starling
approximation,?® i.e., we approximate intercluster correla-
tions with effective spherically symmetric ones. On the other
hand the simple and elegant theory of Wertheim is able, unlike
the Bjerrum-Tani-Henderson theory, to describe fluids with
percolating (n, — oo) clusters. Due to this fact Wertheim’s
theory is able to describe in a consistent way the liquid phase
while the Bjerrum-Tani-Henderson one is not. So, for n, fi-
nite, Bjerrum-Tani-Henderson theory is expected to be more
powerful and flexible than Wertheim theory since it allows
to have more accurate results and it is not restricted to sys-
tems obeying the steric incompatibility conditions. Instead,
Wertheim’s theory is the method of choice whenever a con-
sistent picture of the phase diagram is required.

We will then present a comparison and a critical assess-
ment of the two theories by comparison with new Monte
Carlo simulation results for two model fluids with n, = 2: a bi-
nary mixture and a one-component system, both particularly
suitable for comparing theories for association. In particular
we will show an, apparently unavoidable, subtle short-come
that may appear in the Bjerrum-Tani-Henderson when ap-
plied to multicomponent fluid mixtures: At high temperatures,
when the fluid is dissociated, in the Bjerrum-Tani-Henderson
theory one is left with a one-component mixture of monomers
which may differ strongly from the original multicomponent
mixture.

The paper is organized as follows: In Sec. II we introduce
the thermodynamic quantities we will take in consideration
in the following; in Sec. III we describe the two association
theories discussing the problem of finite and infinite clusters
(Sec. I B 1) and the problem of one attractive site
(Sec. IIT B 2); in Sec. III C we introduce the problem of
the gas-liquid coexistence; in Sec. III D we comment on the
relevance of the pair-potential microscopic level of descrip-
tion; in Sec. IV we summarize some results obtained apply-
ing Wertheim theory to specific fluids with identical sites and
sites of two different kinds; in Sec. V we apply the two theo-
ries to two simple dimerizing associating fluids (a binary mix-
ture (Sec. V A 1) and a one-component fluid (Sec. V A 2))
and compare them with our Monte Carlo simulation results;
in Sec. V B we consider again the problem of infinite clusters
for the Bjerrum-Tani-Henderson theory; Sec. VI summarizes
the main results and contains a few final remarks.

Il. THERMODYNAMICS

Consider a one-component fluid of N associating parti-
cles in a volume V at an absolute temperature 7' = 1/8k, with
ky Boltzmann constant. The inter-particle interaction is as-
sumed to include a hard sphere (HS) part, an isotropic attrac-
tion, and localized bonding interaction, in general anisotropic.

The Helmbholtz free energy A of a hard-sphere associating
fluid can be written as a sum of separate contributions>*

A= Aps+ Aponas 2.1

where A is the free energy due to the hard-sphere repulsive
cores and A, ,; is the change in the free energy due to the
bonding interaction responsible for association. We will gen-
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erally use the notation a(p, T) = a = A/N for the free energy
per particle, where p = N/ V is the density of the fluid.

The excess hard-sphere free energy per particle can be
modeled by the Carnahan and Starling??

o _ 4 =30’
ags = a—n 2.2)
where n = (w/6)po? is the packing fraction of the hard-
spheres of diameter o. So that adding the ideal gas contribu-
tion Ba,; = In(pA3/e), with A the de Broglie thermal wave-
length, we obtain ay ¢ = a;, + afs.

We can always define a unit of length, S, and a unit
of energy, £, so that we can introduce a reduced density,
p* = pS3, and a reduced temperature, T* = kT /€.

The association contribution A,,,, will be discussed in
Sec. III.

lll. BJERRUM-TANI-HENDERSON VS WERTHEIM

We present now the two association theories of BTH?
and of Wertheim (W).> We derive in each case the bond free
energy per particle a,,,, such that the full free energy per
particle of the associating fluid can be written as a = q,
+ aypnq» Where ay = a;, + aj” is the contribution of the refer-
ence fluid, the one obtained from the associating fluid setting
to zero all the bonding localized attractions.

A. Bjerrum-Tani-Henderson thermodynamic theory

We assume that our fluid is composed of n_ species of
clusters. The species i contains N, clusters each made of i par-
ticles. Tani and Henderson®'3-1? assumed that the total par-
tition function of the fluid can be written factorizing the n,
intra-cluster partition functions of the single clusters known
a priori as functions of the temperature 7 alone. Moreover,
assuming that the inter-cluster partition function can be ap-
proximated treating the (weakly interacting) clusters as hard-
spheres of diameter o, they find the following solution as a
result of an extremum procedure,

N, = Niz,/pG(n,), (3.1)
N, = NA"'z/z,, i=1,2,....n, (3.2)
with
N =) iN, (3.3)
i=1
N.=> N, <N, (3.4)
i=1

where N is the total number of particles, p = N/ V is the den-
sity of the fluid, N, the total number of clusters, p. = N,/ V
is the density of the clusters, n, = (1/6)p,03 is the packing
fraction of the clusters of diameter o, z; > 0 the intra-cluster
configuration partition function for the species i (z; = 1 by
definition), and A > 0 is determined through the constraint of
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Eq. (3.3),
0= ir'z - pG,). (3.5)
i=1
d ox 8—9 3x2
G(x) = exp M = exp w ,
dx (1—-x)3

(3.6)

where ag*(n) = ajj. This equation for the unknown param-
eter A always admits a unique solution. In fact, G(x) is a
strictly monotonous increasing function of 0 < x < 1 with
G(0) = 1 and lim,_, ;- G(x) = +o00. We introduce the con-
centration of clusters of species i, the i-mers, as x; = N,/N,
and the total concentration of clusters x, = N,/N = Z?: 1 X
= Mg,/ Z?;l iXz;. Then we notice that lim, _ ,x,
=1,lim, ,  x.=1/n, <1, and x, is a strictly monotonous
decreasing function of 1.7 So G(n,) is a strictly monotonous
decreasing function of A with lim,_,, G(n,) = G[(w /6)pc ]
andlim,_, . G(n,) = G[(7r/6n,)po]. We also notice that we
must require (71/6),0053 < 1. Observing next that Z?;l iA Z;
is a strictly monotonous increasing function of A which is zero
at A = 0, we conclude that Eq. (3.5) must admit always only
one solution A > 0 such that lim, , ; A = 0 and lim
x =1

The total partition function Q,,, of the fluid is given then
by

p—>0

nQ,, = Z [N;Inz; = (N;InN; = N)]+1InZ,

=N,—N,InN, — (N —=N)InA+1InZ, (3.7)

where Z, is the inter-cluster configurational partition func-
tionand BAS = —1In(Z,/ Vv Ne) is the inter-cluster excess free
energy.

Introducing the concentration of monomers x;, = N;/N
and the concentration of clusters x; < x. = N/N < 1 (note
that 1/x, can be considered as a measure of the average cluster
size), we can rewrite

patit = pla— (@ +a5)]
=x,Inx; + (1 —x,)In(re/p)
+8 (aﬁx - af)") + constants, (3.8)
where fa = —(In Q,,,)/N is the associating fluid total free en-

ergy per particle and a¢* 4 a'? is the reference system to-
tal free energy per particle. Note that, in the absence of at-
tractions and therefore in the presence of monomers only
x; = x, = 1, in order to have af! ¥ =0 we must have af*
=lim_  _ , af*. Only for o, = o this condition is satisfied by
the Ca;nahan-Starling reference system, ajj¢ of Eq. (2.2). In
the most general case we may think at o, as a function of the
thermodynamic state of the associating fluid. In the present
work we will always restrict to the case of a constant o ..

At high temperatures all z; — 0 for i > 1 and x; — x,
— lorA — pG[(7/6)pol]/z,, which means we have com-
plete dissociation. At low temperatures all z; — oo for i > 1
and x; — 0 or A — 0, which means that we have association.

J. Chem. Phys. 141, 074108 (2014)

B. Wertheim thermodynamic theory

In Wertheim theory® one assumes that each hard-sphere
of the one-component fluid (the case of a mixture will be con-
sidered in detail in Sec. V A) is decorated with a set I' of M
attractive sites. Under the assumptions of (i) a single bond per
site, (ii) no more than one bond between any two particles,
and (iii) no closed loop of bonds, one can write in a first or-
der thermodynamic perturbation theory framework, valid at
reasonably high temperatures,

X, M
ﬁa;ﬁ'md = Z (lnxa - 7) + 5

ael

(3.9)

where x, = N, /N is the fraction of sites « that are not bonded
(not to be confused with x; the concentration of clusters made
of a number i of particles. We will always use a Greek index to
denote a specific site) and can be solved by the “law of mass
action,”

1
X, =
L4+ 0 ger X504
where the probability to form a bond, once the available sites

of the two particles are chosen, is given by pA,z = pAg, and
approximated as

, ael, (3.10)

Ayp =/ go(rlz)(faﬂ(12))91,92dr12. (3.11)

af

Here the integral is over the volume v, of the bond a8, g, is
the radial distribution function of the reference system, f, 8 is
the Mayer function between site « on particle 1 and site 8 on
particle 2 (see Sec. III D), and (.. '>le92 denotes an angular
average over all orientations of particles 1 and 2 at a fixed
relative distance r|,. Equation (3.10) should be solved for the
real physically relevant solution such that lim, _, 5 x, = 1.

At high temperatures A,, — 0 and x, — 1, which
means we have complete dissociation. At low temperatures
(Wertheim theory is a high temperature expansion but here we
just mean the formal low 7 limit of the first order Wertheim
results) A,z — oo and x, — 0, which means that we have
complete association.

The number of attractive sites controls the physical be-
havior. Models with one site allow only dimerization. The
presence of two sites permits the formation of chain and ring
polymers. Additional sites allow formation of branched poly-
mers and amorphous systems.

1. Finite vs infinite clusters

Wertheim theory, unlike BTH one, allows for the exis-
tence of infinite clusters in the fluid: The percolation phe-
nomenon. In particular, in Wertheim theory one can define'®
P, =Y, ix; as the probability to have a particle in a finite
cluster (in BTH theory P, = 1 by construction). One can then
define the mean cluster size, or number averaged size of the
finite clusters, N, = ), ix,/>_, x;, the mean size of a cluster
to which a randomly chosen particle belongs, or weight aver-
aged cluster size, N, = Y, i%x;/ Y_; ix;, or higher moments
of the cluster size distribution x;.
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The interplay between condensation and clustering in as-
sociating fluids has been the subject of many studies.'® In
particular, Coniglio et al.?> proposed a general theory of the
equilibrium distribution of clusters, establishing a relation be-
tween percolation and condensation. Percolation is generally
believed to be a prerequisite for condensation. As a matter of
fact in Sec. V B we will show explicitly that BTH theory is
unable to account for condensation.

2. One attractive site

The simplest case we can consider in Wertheim theory
is the one with a single site o, M = 1. In this case only
monomers and dimers can ever form. Solving the law of mass
action for x = x,, the fraction of non-bonded sites o which
coincides with the concentration of monomers x,, we find

2
Tl Tt a0h
with A = A,,, which has the correct low density limit
lim, , ,x=1
Analogously we can solve this simple case in BTH theory
allowing only for monomers and dimers, n, = 2, and choos-
ing the ideal gas approximation for the inter-cluster configura-
tional partition function, G = 1 (the o, — 0 limit of Eq. (3.6)).
Then we should solve for A > 0 in the following quadratic
equation:

(3.12)

x; = Az, /p, (3.13)
Xy = A2,/p, (3.14)
1 =x; + 2x,. (3.15)
The solution for the monomers concentration is
2
X (3.16)

1+,/148pz,/2}

We then see that we have agreement between the two theories
if we choose

A =22,/7} = 2z,. (3.17)

Already for this simple case we see that the bond con-
tribution to the free energy predicted by the two theories,
Egs. (3.9) and (3.8), coincide. In fact, from BTH theory of
Eq. (3.8), since the excess free energy of the reference system
and the inter-cluster excess free energy are both zero, we find,
up to an additive constant,

ﬂalﬁ,{lf =x,Inx, + (1 —x,)In(xe/p)
= lnxl + (1 - xc)
=Inx; —x;/2+1/2=Bayy,,.  (3.18)

where the second equality follows from Eq. (3.13), the third
one from observing that x, = (1 — x;)/2, and the last one from
Eq. (3.9).

BTH theory, on the other hand, allows to be more accu-
rate and to treat the fluid of clusters instead of just as an ideal

J. Chem. Phys. 141, 074108 (2014)

gas as a fluid of hard-spheres of diameter o . In this case one
should solve numerically Egs. (3.1), (3.2), and (3.5) with G
given by Eq. (3.6). And the inter-cluster excess free energy
will be given by

4n, —3n?
1-n)%’

whereas the excess free energy per particle of the reference
system will be the usual Carnahan-Starling one of Eq. (2.2).%°

Taking a = ayg + a,,, and choosing z, = A/2
we compared the behavior of the two theories. Following
Ref. 7 and approximating the radial distribution function of
the reference system, in Eq. (3.31) which appears next in the
text, with its zero density limit, we choose A = Ko[exp (Be)
— 1] with K° = 7d*(150 + 4d)/300% =~ 0.332 x 10733,
This choice is dictated by the fact that Wertheim theory gives
only a semi-quantitative agreement with simulation data and
we did not find any substantial improvement, at least in the
density ranges we considered, by choosing a better refined
low density approximation, as is done in other works.”!? In
Fig. 1 we show the comparison of the behavior of the pressure
(from Eq. (3.20) which appears next in the text) and dimers
concentration as functions of density calculated analytically
in Wertheim theory and numerically in BTH theory with o
= o, on several isotherms. As expected even at very small

Bas* = (3.19)

(3]
©
)
(=}
.
1 I 1 1 1 1 1 1 1 1
00 01 02 03 04 05 06 07 08
£
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FIG. 1. Comparison of the behavior of the excess pressure, Sp** = Bp — p
(top panel) and dimers concentration (bottom panel) as functions of density
for the BTH theory (thick lines), for o . = o, and the W theory (thin lines),
on several isotherms.
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temperatures there is no sign of a gas-liquid coexistence, the
pressure being a monotonously increasing function of den-
sity. We have just shown that at low density the two theo-
ries must coincide since lim 00 G = 1, but from the figure
we see that the interval of densities over which the two theo-
ries agree increases of width as T increases. The figure shows
how at high temperatures the two theories tend to become
coincident but at low temperatures they differ strongly. This
raises the question of which one of the two theories is a better
approximation when compared to the exact Monte Carlo re-
sults. We will delay the answer to this legitimate question until
Sec. V A 2. BTH theory naturally demands an approximation
for the intra-cluster partition functions. In this work, unlike
previous ones,'>"! we will always use the relation (3.17)
when comparing the two theories.

Nonetheless we expect Wertheim theory to become more
simple and elegant than BTH theory for M > 1. As a matter
of fact we expect in these cases the presence in the fluid of
i-mers of any size i. So that using BTH theory we will nec-
essarily introduce the additional approximation of the maxi-
mum number of cluster species i < n,, an artificial cutoff not
needed in Wertheim theory.

C. The gas-liquid coexistence

In order to determine the gas-liquid coexistence line (the
binodal) one needs to find the compressibility factor z = 8p/p,
with p the pressure, and the chemical potential  of the asso-
ciating fluid according to the thermodynamic relations

2(p, T)=0p (?) , (3.20)
0 /)TN
Bulp,T) = (8/351,0) =z + Ba. 32D
P Jryv

The coexistence line is then given by the Gibbs equilib-
rium condition of equality of the pressures and chemical po-
tentials of the two phases

Pz(pg, T) = pyz(py, T), (3.22)

Bulpg, T) = Bulp;, T),

from which one can find the coexistence density of the gas
p(T) and of the liquid p,(T) phases.

The critical point (p,, T,) is determined by solving the
following system of equations:

(3.23)

9
A —" (3.24)
8,0 pv‘Tv
82
? - —o. (3.25)
I P T,

D. Microscopic description: Importance
of the pair potential

The fluid is assumed to be made of particles interact-
ing only through a pair-potential ¢(12) = ¢(r, 2, r,, 2,),

J. Chem. Phys. 141, 074108 (2014)

where r; and €2; are the position vector of the center of parti-
cle i and the orientation of particle i, respectively.

To give structure to the fluid we further assume that the
particles have an isotropic hard-core of diameter o with

P(12) = ¢y 5(ryp) + $(12),

where r|, = |r,| = |r, — 1| is the separation between the
two particles 1 and 2 and

(3.26)

400 r<o

Gps(r) = 0 - (3.27)

The anisotropic part ®(12) in Wertheim theory is gener-
ally chosen as

D(12) = Y Y Yp(ryp), (3.28)
ael’ el
where
Iy =T, +dg(Q) — 1 —d (Q) (3.29)

is the vector connecting site « on particle 1 with site 8 on par-
ticle 2. Here d,, is the vector from the particle center to site o
with d,, < o/2. The site-site interactions ¥, ; < 0 are assumed
to be purely attractive. The Mayer functions introduced in
Sec. III B are then defined as faﬂ(l2) = exp [—BY ,5(ryp)]
- 1.

Wertheim theory depends on the specific form of the site-
site potential only through the quantity A, 4 of Eq. (3.11), as
long as the three conditions of a single bond per site, no more
than one bond between any two particles, and no closed loop
of bonds, are satisfied. A common choice, for example, is a
square-well form
—€p = da,s

waﬂ(r) = 0 > daﬂ s

(3.30)

where €,, > 0 are site-site energy scales, the wells depths,
and d, 4 are the wells widths. In this case we must have
d, +dg > o — d gz moreover we will have
Aup = Kop(0.dyg, )" — 1), (3.31)
We will also call lim, 5 Kz = K 35 some purely geometric
factors. Remember that limp_) 0 &) = O — o) with ®
the Heaviside step function. Another common choice is the
Kern-Frenkel patch-patch pair-potential model.?’

In BTH theory on the other hand, we are allowed to relax
these conditions and the choice of the pair-potential is more
flexible as long as it includes some attractive component re-
sponsible for the association.

IV. SOME RESULTS FROM WERTHEIM THEORY

Wertheim theory of associating fluids has been recently
tested extensively by Sciortino and co-workers. In a se-
ries of papers, they have studied fluids of hard-spheres with
identical sites allowing for “chaining”®® and with sites of
two different kinds allowing for “branching”!®-'? and for
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“rings” formation.'>'* They showed how the parameter-free
Wertheim theory is flexible enough to accommodate a vast
number of different microscopic pair-potentials descriptions
and nonetheless pointed out some relevant classes of micro-
scopic features giving rise to specific macroscopic behaviors
at the level of the clustering, the percolation threshold, and
the gas-liquid coexistence.

In all these cases n, — oo so they cannot be treated with
the BTH theory which as we will see in Sec. V B is unable
to account for the gas-liquid coexistence. Thus, in order to
compare the two theories we have to choose different systems.

V. COMPARISON BETWEEN WERTHEIM THEORY
AND BJERRUM-TANI-HENDERSON THEORY

In order to test the accuracy of the Wertheim and BTH
theories we carried out some Monte Carlo (MC) simulations
on simple models of associating fluids.

A. One attractive site, n, =2

We limit ourselves to the case n, = 2 and we consider
two different realizations of this scenario: A binary mixture
and a one-component fluid.

1. A binary mixture

To test the single site case we considered a symmetric
binary mixture of particles with the following pair-potential
between a particle of species & (in this section a Greek index
with an over-bar labels the particle species) and one of species
B a center-to-center distance r apart

+00 I <045
—(1 - 6&5)6 Ozp <T =045 +W, (5.1)
0 r>oz;+W

¢5¢,§(7) =

where Osf = (1/2)(o; + 05)(1 + D&B) with 0, =0 and
Dy = —(1 —8,5) with & and B equal to 1, 2 and § the
Kronecker delta. So that 0,5 = 0855. € > 0 and W > 0 are,
respectively, the square well depth and width for the attrac-
tion of unlike particles. Also we choose the symmetric case
where the concentrations of particles of species &, X; = 1/2
for @ = 1, 2. In this case the ideal part of the free energy will
be given by Ba;; = In(pA3/e) + X, In X, + X, In X,, where
the entropy of mixing, the last two terms, is just an additive
constant.

It is then clear that, for W < o/2, this model fluid allows
for dimerization only, just as the M = 1 case of Wertheim.
In fact, whenever two unlike particles bind, a third particle
can never bind to the formed dimer because of the hard-core
repulsion between like particles. Moreover by choosing W
small at will we may reach the ideal condition of o, = o with
o, the diameter of the dimers in the BTH theory. The refer-
ence fluid, the one with € = 0, is a symmetric non-additive-
hard-sphere (NAHS) mixture with non-additivity D,, = —1.

J. Chem. Phys. 141, 074108 (2014)

We will then take
e 21— (3/4n?
T —/2mp
Wertheim theory has been extended to multicomponent
mixtures by Chapman et al.?® For a mixture with a num-

ber n, of species and N; = NX; particles of species & =
1,2,...,n,, wehave

(5.2)

Bay = Z X lInx, —x,/241/2], (5.3)

a=I1

where x; = N{'/N, is the monomer fraction of species @,
with N¥ the number of monomers of species @, and is de-
termined by the following law of mass action,

1

= - , 5.4)
1 + 1Y Zﬁ:l XBxEAC?B

Xa

Aap = Bpa = / 7ggg(r12)<fag(12)>gl,deru, (5.5)

l)é({3
with gg 3 the partial radial distribution of the reference fluid

0
and f,5(12) = ¢ P9ap"12)7%"2)) _ | the Mayer function be-
tween particle 1 of species & and particle 2 of species 8, with
qbg 5 the pair-potential of the reference fluid.

In our symmetric binary case x;_; = x;_, = x and A
= A, = K,(e#¢ — 1) (with A, = 0 for @ = 1, 2), where,
since the unlike radial distribution function of the reference
system is the one of the ideal gas, equal to one everywhere,
we have exactly K, = (4/ 3)m W3, The solution of Eq. (5.4)
is

2

TR i 2A
Here we will choose W = 0.10.

On the other hand BTH theory continues to hold just as
in its one component fluid formulation given in Sec. III A.
We expect the cluster diameter to vary within the interval
o <0, <o+ W even if for the comparison with the sim-
ulation data we will need to consider o, < o. We will now
choose z, = A/4.

At high temperatures z, = A/4 — 0 and x; — 1,
x, = 1 s0 Ba" = Bay, +[2n— G/l - (1/2n),
whereas Ba®T = Ba., + [4n. — 3n21/[1 — n.]>. Then for
o, # o/2' the parameter free Wertheim theory is cer-
tainly a better approximation than BTH. At low temperatures
2y = A4 — oo and x; — 0, x, — 1/2, and the two theories
become equivalent for o, = o (see the Appendix). Within
BTH one is free to choose o in such way to get more accu-
rate results.

The opposite behavior was observed for the one-
component case of Sec. III B 2 where the two theories, for
o, = o, become equivalent at high temperature and at low
temperature they differ and BTH is expected to become better
than W.

We carried out MC simulations of this mixture in the
canonical ensemble using a total number N = 500 of parti-
cles. In the simulation we measure the pressure from the virial

(5.6)
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theorem as®’

1
M= 14 370 [0781,(6™) — (¥ — DW g ,,OW 1],
(5.7)

where g5 are the partial radial distribution functions. In the
simulation we define a dimer as any two particles for which
the pair-potential equals —e. So, we measure the dimers con-
centration xé” € = —u® /e, where u®" is the excess internal en-
ergy per particle of the fluid. As usual we choose o as the unit
of length and € as the unit of energy. At the lowest tempera-
ture studied, 7" = 0.1, the probability of breaking a bond is of
the order of exp (1/0.1), thus requiring 2 x 10* MC attempts
to break such a bond. Our simulations were of the order of
4 x 10° MC steps long, with a MC step made by N single
particle moves.

We compare the simulation data with the dimers concen-

trations, x," and x27# and pressures, pz" and pz8™H, pre-
dicted by Wertheim and BTH theories, where
8 aex +aW
= 1+p—ﬂ( L ’”’”"), (5.8)
ap
98 (a¢* +aBTH
ZBTH — 1+,0 ﬁ( 0 bond)’ (5.9)

ap

with ag* given by Eq. (5.2), a,ffmd given by Eq. (5.3), and
afTH given by Eq. (3.8) with n, =2 and z, = A/4.

In Fig. 2 we compare the equation of state and the dimers
concentration as a function of density predicted by Wertheim
and BTH theories with the MC results at a low reduced tem-
perature 7" = 0.1. We see that by choosing the cluster diam-
eter opportunely, 0. < o, one can get the BTH results for the
pressure to overlap with MC data over a wide range of densi-
ties. Fig. 3 shows the same comparison at the high tempera-
ture 7* = 0.4 for the optimal o, = ¢/2'3. From the figures we
conclude that BTH theory, with the optimal o for the equa-
tion of state, improves at low temperatures, where it becomes
more accurate than Wertheim theory, but fails a correct de-
scriptions of the clusters concentration at high temperatures
and high densities. By appropriately tuning the cluster diam-
eter o it is possible to get better agreement for the dimer
concentration but then the theory would fail to reproduce the
pressure correctly. So it is never possible to get good agree-
ment for both the pressure and the dimer concentration.

In Fig. 4 we compare the pressure and the dimers con-
centration as functions of temperature predicted by the two
theories, when o, = ¢/2!"* in BTH, with the MC results at a
low reduced density p* = 0.6. The figure shows how in this
case the Wertheim theory is better than BTH.

2. A one-component fluid

As a one-component fluid we chose the single patch
Kern-Frenkel model'>?’ where the particles interact with the
following pair-potential

¢(’”12) = ¢Hs(r12) + ¢sw("12))’(ﬁ17 IA12’ IA'lz)s (5.10)
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FIG. 2. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the 7% = 0.1 isotherm for YW = 0.1c. The broken line
is the prediction of W theory, the continuous line the one of BTH theory with
o.=0980, and the points are the exact MC data.

where
—€ o<r<o+W
dsw(r) = !0 else , (5.11)
and
y(yg, iy, T)))
1 h,-f,>cosf, and —n,- F,>cosb,
B {0 else ’
(5.12)

here fi; is a unit vector pointing from the center of parti-
cle i towards the center of her attractive patch and 6, is
the angular semi-amplitude of the patch. The fraction of the
particle surface covered by the attractive patch will then be
X =/(V)a.q, = sin’(6,/2).

In order to have n, = 2 we must choose 6, < m/6 or
x < (v/3 —1)?/8 ~ 0.0670 in the sticky limit W — 0 and

1 1
N R —
082 > 3t 20 +W)

xv/603W — a2W? — 4o W3 — WH,

(5.13)
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FIG. 3. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the 7* = 0.4 isotherm for YW = 0.1c. The broken line
is the prediction of W theory, the continuous line the one of BTH theory with
o.= /2" and the points are the exact MC data.

more generally, for small WW. As before we choose W = 0.1o
and in order to fulfill the single bond per patch condition
(5.13) we take 6, = m/12 or x = 0.0170. This choice cor-
responds to a patch-patch bonding volume v, = (/3)[(c
+W)? —a31(1 — cos6y)* ~ 0.402 x 107303, We then
choose for A its zero density limit approximation
A= v[,p(ef’e —1).

We carried out MC simulations of this one-component
fluid in the canonical ensemble using a number N = 500
of particles. The pressure is calculated during the simulation
from the virial theorem as follows,?’

M =14 o g0 ™) — (14 W/0) (8,10 + W]

[(c +W)*1}], (5.14)

~ 8
where g,,(r) is the radial patch-patch distribution function:
The partial radial distribution function which considers only
particles with facing patches. Again, we measure the dimers
concentration as xé"’ € = —u®/e. As usual we choose o as the
unit of length and € as the unit of energy. A MC move here

consisted of both a random displacement of the center of the
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FIG. 4. Pressure (top panel) and dimers concentration (bottom panel) as a
function of temperature on the p* = 0.6 isochore for W = 0.1¢. The broken
line is the prediction of W theory, the continuous line the one of BTH theory
with o,= o/2'3 and the points are the exact MC data.

particle and a random rotation of the particle (according to the
Marsaglia algorithm?”).

In Figs. 5 and 6 we compare the simulation data on two
different isotherms, at low temperature 7% = 0.1 and high tem-
perature T° = 0.4, with the dimers concentrations, x;” and
xBTH and pressures, pz" and pz8™, predicted by Wertheim
and BTH theories as shown in Sec. III B 2. From the compari-
son emerges that at low temperatures one can adjust o, in the
BTH theory to obtain good agreement either with the pres-
sure or with the dimers concentration data, but not with both
simultaneously. In the high temperature limit the two theories
coincide for o, = o, but again BTH fails at high densities at
large but finite temperature.

For this system we also tried to use in the BTH theory
an intercluster partition function derived from the Freasier
et al.®' equation of state for dumbbells with a center-to-center
distance equal to o. But we soon discovered that such an
equation of state is very similar to a Carnahan-Starling with
a o, ~ 2.50. This implied that we could study only a den-
sity range p* < 603 /(o) ~ 0.1222. At such low densities
the fluid tends to dissociate into monomers and as a conse-
quence such refined BTH becomes worst than the usual BTH
with a Carnahan-Starling intercluster partition function with
o closetoo.
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FIG. 5. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the 7* = 0.1 isotherm for YW = 0.10 and 6, = 7/12.
The broken line is the prediction of W theory, the continuous line the one of
BTH theory with o, = 1.230, and the points are the exact MC data.

B. Number of cluster species n_ > 2

We have seen in various ways that as long as n, <2 we
expect, either from the Wertheim theory or from the BTH the-
ory, the absence of the liquid phase. So now we want to un-
derstand if there exists a critical n_, i, such that for n, > 7,
we may have the appearance of the liquid in the associating
fluid.

According to Wertheim:® “As long as [n_] is finite, or at
least a reasonably small number, we would expect increasing
association with decreasing T, but no gas-liquid transition.
On this basis one may conjecture that the gas-liquid transi-
tion is related to the catastrophic increase with s of allowed
s-mer[s] [...] when no cutoff [...] is provided.”

Wertheim also suggests that, releasing the single bond
per site condition, a pair-potential of the form given by
Eqgs. (3.26)—(3.30) allows to have fluids with n, > 2 finite. If
Wertheim is correct we would be unable to predict the liquid
phase within the BTH theory.

In order to understand better this point we looked if it is
possible to have the appearance of a van der Waals loop in
BpP™ = pBT™H = p29BaB™/3p for n, > 2. We looked then
at the low temperature 7 — 0 and large number of cluster
species n, — oo limit. We choose the z; — oo fori > 1 in
the low temperature limit, in such a way to fulfill complete
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FIG. 6. Pressure (top panel) and dimers concentration (bottom panel) as a
function of density on the 7" = 0.4 isotherm for VW = 0.10 and 6, = 7/12.
The broken line is the prediction of W theory, the continuous line the one of
BTH theory with . = o, and the points are the exact MC data.

association, i.e., lim;_ ,x, = 1/n,. Specifically we realized
this by the choice z; = (z,)' ~ !, which can be justified from
the extensive property of the intra-cluster excess free energy.
Then, due to the complete association, we have

T—0 1 n.—~>>®

x, —> — —— 0,

ne

(5.15)

so a® — 0. Moreover, it is easy to see, either from a numer-
ical analysis or analytically, that

,dlx Inx; + (1 —x,.)In(re/p)]
ap

—p <a(n,) = lim p
(5.16)

with a(n,) = (1/n, — 1)p (remember that lim,_, ; A = 0 and
temperature and density are two independent variables) and
lim, a(n,) =—p and a(2) = —p/2 (see the Appendix).
So that, in particular,

li li BTH =0.
nrgn [’} T1—>n}] p 0

(5.17)

This result strongly suggests that BTH will never be able
to account for the liquid phase, contrary to the Wertheim
theory.® 1114
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VL. CONCLUSIONS

We compared Wertheim and BTH association theories.
Whereas Wertheim theory is able to account for fluids with
an infinite number of cluster species, BTH is not. As a result,
only Wertheim’s approach is able to account for the percola-
tion and the condensation phenomena.

For the special case of fluids allowing for dimerization
only, Wertheim theory becomes equivalent to BTH provided
an ideal gas description of the inter-cluster partition function
is used. For the Bjerrum-Tani-Henderson theory we also rig-
orously proved the uniqueness of the solution for the cluster’s
concentrations and the reduction of the system of equations to
a single one for a single unknown.

To assess the accuracy of Wertheim and the full BTH
using a hard-sphere (Carnahan-Starling) description of the
inter-cluster partition function, we performed some MC
simulations of two dimerizing systems: a binary mixture of
associating non-additive hard-spheres and a one component
single patch Kern-Frenkel fluid. Our results show that the
parameter free Wertheim’s theory captures well, at low
density, the behavior of the MC data, both for the pressure
and the concentration of dimers, and the range of densities
where it is valid increases with increasing temperature. BTH,
on the other hand, has the dimer diameter as a free parameter
which can be adjusted to find more accurate agreement with
the simulation data, even if the breakdown of its validity at
high density still remains.
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APPENDIX: LOW TEMPERATURE LIMIT
OF BTH AND W THEORIES

For the case studied in Sec. V A, from W theory we find,
for the compressibility factor,

aﬂ al::/md _ Ap

w

Zhond = P = ’ (Al)

dp (1+ vT+24p)°
s0, in the low temperature limit, we have
lim z,) = —1/2. (A2)
A—00
In BTH theory instead
9BaBTH
Bl = p Pt S (A3)
0

Recalling that x, = (1 + Az,)/(1 + 2)z,), we find, in the low
temperature limit, limzﬁoo x, =1/2. Then, for o, = o, we
have aZ* — ag*. So, since z, and p are independent variables,
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d[x,.1 1 —x.)In(x
lim 274 — lim polelnn U Zx)nGe/p)l oy,
7,00 7,—>00 ap
Observing further that limzﬁoo)u =0 we then find

limzz_)OO ZPTH = —1/2 as for Wertheim.
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