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The mutual entropic depletion force felt by two solute “big” hard spheres immersed in a binary mix-
ture solvent of nonadditive “small” hard spheres is calculated as a function of the surface-to-surface
distance by means of canonical Monte Carlo simulations and through a recently proposed rational-
function approximation [R. Fantoni and A. Santos, Phys. Rev. E 84, 041201 (2011)]. Four represen-
tative scenarios are investigated: symmetric solute particles and the limit where one of the two solute
spheres becomes a planar hard wall, in both cases with symmetric and asymmetric solvents. In all
cases, the influence on the depletion force due to the nonadditivity in the solvent is determined in the
mixed state. Comparison between results from the theoretical approximation and from the simulation
shows a good agreement for surface-to-surface distances greater than the smallest solvent diameter.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884353]

I. INTRODUCTION

In chemical physics, one often finds solute particles im-
mersed in a solvent. Even though the solute particles interact
through a true potential, an important problem consists of re-
ducing the solute-solvent system of particles to an equivalent
one made of only the solute particles but interacting through
an effective potential. This problem has been much studied
for the paradigmatic case of an athermal mixture of additive
hard spheres (AHS)1 and for the more general case of nonad-
ditive hard spheres (NAHS).2–4 The problem is usually solved
in a two-step procedure. Starting from the pioneering work of
Asakura and Oosawa,5 one first determines the effective pair
potential, the so-called depletion entropic potential, between
two “big” solute hard spheres (in three6–8 or two9 dimensions)
immersed in a solvent of “small” hard spheres. Once this stage
has been carried out, one can study the properties of a fluid
of particles interacting with such an effective pair potential.10

While the assumption of pairwise additivity is essentially un-
controlled, since the presence of a third particle in the vicinity
of a pair of solutes will alter the solvent (the depletant) spatial
distribution, it is expected that such limitations of the pairwise
additivity approximation become progressively less relevant
on decreasing the solute density and/or the size ratio between
the diameter of a solvent particle and that of a solute particle.
The oscillations in the depletion potential, for example, are
found to be responsible for gelation in binary mixture of hard
spheres11 and for spatial heterogeneity in bimodal colloidal
suspensions.12

In the present work, we are interested in the first step of
such a programme. The depletion potential problem has been

a)Electronic mail: rfantoni@ts.infn.it
b)Electronic mail: andres@unex.es. URL: http://www.unex.es/eweb/fisteor/

andres/.

studied in several different scenarios. One can have nonspher-
ical solute13 or solvent14 particles. For spherical solute and
solvent particles, the case we are interested in, the solvent
itself may be an AHS mixture (binary,15 multicomponent,16

or polydisperse17, 18). Additionally, the solvent particles may
have various kinds of interaction.19–22 When the solvent par-
ticles interact with a potential which has some attraction, an
interesting issue is the one of understanding how the depletion
or force will be affected upon approaching the gas-liquid co-
existence critical point of the solvent, where the critical fluc-
tuations are expected to give rise to the so-called thermody-
namic Casimir forces.23–26

Recently, we constructed an approximate theory for the
structure and the thermodynamics of a general NAHS mul-
ticomponent mixture,27, 28 which we called the (first order)
rational-function approximation (RFA). The theory provides
a fully analytical representation of the radial distribution func-
tions in Laplace space which extends to the nonadditive case
the exact solution of the Percus–Yevick (PY) integral equation
for AHS mixtures.29, 30 It is the purpose of the present work
to use the RFA theory to predict the depletion force when the
solvent is a NAHS binary mixture and to compare our theo-
retical predictions with Monte Carlo (MC) simulation results.
We clearly want to avoid demixing31, 32 in the solvent. This re-
stricts the combinations of solvent density and (positive) non-
additivity that we are allowed to choose. An interesting open
problem, that we leave to a future study, is the study of how
the depletion force is affected by approaching the demixing
critical point on the critical isochore.

In order to find the depletion force in the simulations,
we followed the MC method of Dickman et al.33 In molec-
ular dynamics simulations, however, a different strategy34 is
more suitable. We decided not to determine the depletion po-
tential from the force because the spatial integration of the
latter can introduce additional uncontrolled uncertainties. On

0021-9606/2014/140(24)/244513/9/$30.00 © 2014 AIP Publishing LLC140, 244513-1

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

151.51.162.207 On: Sun, 13 Jul 2014 20:57:01

http://dx.doi.org/10.1063/1.4884353
http://dx.doi.org/10.1063/1.4884353
http://dx.doi.org/10.1063/1.4884353
mailto: rfantoni@ts.infn.it
mailto: andres@unex.es
http://www.unex.es/eweb/fisteor/andres/
http://www.unex.es/eweb/fisteor/andres/
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4884353&domain=pdf&date_stamp=2014-06-30


244513-2 R. Fantoni and A. Santos J. Chem. Phys. 140, 244513 (2014)

the other hand, it is possible to determine the depletion po-
tential directly in a MC simulation by allowing the two solute
impurities to move.26

We will consider four different scenarios: (i) two sym-
metric solute particles in a symmetric solvent, (ii) two sym-
metric solute particles in an asymmetric solvent, (iii) ex-
tremely asymmetric solutes, in the limit where one of the two
solute spheres reduces to a planar hard wall,28 in a symmet-
ric solvent, and (iv) the same situation but in an asymmetric
solvent.

The paper is organized as follows. In Sec. II, we intro-
duce the fluid model we set up to study further on, while in
Sec. III the observable to be measured in MC simulations and
estimated with our RFA theory is described. Details about our
MC simulations are given in Sec. IV. Section V presents the
numerical and theoretical results for the depletion force and
compares them. The paper is closed in Sec. VI with some
final remarks.

II. THE MODEL

We consider the following general model. Two solute big
hard spheres (the impurities) of species a and b and diameters
σ a = σ aa and σ b = σ bb with σab = 1

2 (σa + σb) are immersed
in a NAHS binary mixture solvent made of Nμ small hard
spheres of species μ = 1, 2 of diameter σμ = σμμ in a volume
V , such that

σ12 = σ1 + σ2

2
(1 + �) (2.1)

with � > −1 measuring the solvent nonadditivity. The
solute-solvent interaction is assumed to be additive, i.e., σμα

= 1
2 (σμ + σα) with μ = 1, 2 and α = a, b.

Without loss of generality, we take σ 1(≤σ 2) as length
unit. Thus, we define the solvent/solvent size ratio σ 2/σ 1 ≥ 1,
the solute/solute size ratio σ b/σ a ≥ 1, and the solute/solvent
size ratio σ a/σ 1 > 1. The solvent total number density is
ρ = N/V = ∑2

μ=1 Nμ/V = ∑2
μ=1 ρμ and the mole fraction

of species μ = 1, 2 is xμ = ρμ/ρ, with x1 + x2 = 1. From this
we can introduce the partial packing fractions ημ = π

6 ρxμσ 3
μ

and the nominal total packing fraction η = ∑
μημ.

The model is characterized by the following set of six
independent dimensionless parameters: η, x1, σ 2/σ 1, and �,
defining the solvent, and σ b/σ a and σ a/σ 1, defining the so-
lute. Note that the model can also be obtained from the more
general one of a quaternary mixture with a = 3, b = 4 in the
limit of infinite solute dilution x3 → 0, x4 → 0.7

The depletion force is formally independent of the
solvent-solvent interaction (see Sec. III).33, 35 But of course
it depends on the local solvent density in the neighborhood
of the solute particles and such a density is affected by
the solvent-solvent and solvent-solute interactions. A natu-
ral question then arises: As the solvent-solvent nonadditivity
is switched on, how the induced change in the local solvent
density affects the depletion force? Clearly, far away from the
solute spheres there will be no change in the almost constant
local density, i.e., the bulk density. But the local density in
the vicinity of the solute particles would change and thereby
so would the force. To first order in density, however, the de-

pletion force is completely independent of the solvent-solvent
interaction,7 so the influence of nonadditivity is absent. Thus,
one can expect the effect to be small for dilute solvents but its
impact as the bulk solvent density increases is uncertain.

We could alternatively switch on a solute-solvent
nonadditivity,2, 4, 36 but this case is somewhat less interesting
than the previous one. For example, in the case of two solute
spheres of diameter σ a immersed in a one-component solvent
of spheres of diameter σ 1 with σ1a �= 1

2 (σ1 + σa), one can
map the problem onto an additive one where the solute par-
ticles have an effective diameter σ eff

a = 2σ1a − σ1, provided
that σ1a ≥ 1

2σ1. The effective problem determines the deple-
tion force for r > σ eff

a , so that the original problem becomes
completely solved in the case of negative nonadditivity (since
then σa > σ eff

a ), while in the case of positive nonadditivity it
only remains unsolved in the region σa < r < σ eff

a . For this
reason, we will not consider solute-solvent nonadditivity in
our analysis.

In this study, we will first restrict ourselves to the partic-
ular case of equal solute impurities (σ b/σ a = 1) and consider
both a symmetric (σ 2/σ 1 = 1, x1 = 1

2 ) and an asymmetric
(σ 2/σ 1 �= 1, x1 �= 1

2 ) nonadditive solvent. Our aim is to assess
in both cases the effect of the solvent nonadditivity on the de-
pletion force. Then, we will consider the case of extremely
asymmetric solute impurities in the limit σ b/σ a → ∞, where
one of the two impurities is seen as a hard planar wall both by
the other solute sphere and by the solvent species.

III. THE DEPLETION FORCE

We want to determine the force exerted on one big so-
lute sphere immersed in a solvent of small spheres due to the
presence of a second big solute sphere, assuming a hard-core
repulsion between the solvent and the solute. The solvent in
the presence of only one solute sphere at the origin will keep
being an isotropic fluid (even if not homogeneous anymore)
and the solute sphere will feel a zero net force. However, if we
add a second solute sphere in the solvent, the isotropy sym-
metry will be broken (we are then left with a solvent fluid with
axial symmetry around the axis connecting the centers of the
two solute spheres) and, as a consequence, each solute sphere
will exert an effective force F on the other one, mediated by
the solvent. This force has the form35

βF(r) = −
∫

S

dAρ(r)(rs )̂n, (3.1)

where β = 1/kBT is the inverse temperature parameter, the
integral is carried out over the surface S of the sphere cen-
tered on the solute particle experiencing the force, dA is an
elementary area on S, n̂ is the outward normal unit vector,
and ρ(r)(rs) is the local density of the solvent (in the presence
of the two solute spheres) at the point rs on the surface S.

A. Monte Carlo implementation

1. One-component solvent

Let us first assume a one-component solvent made of N
spheres of diameter σ 1 and coordinates ri (i = 1, . . . , N) in
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a volume V . The solute particle of species a is centered at
ra and the solute particle of species b is centered at rb = ra

+ r̂r. According to Eq. (3.1), the force Fab(r) = Fab(r )̂r felt
by sphere b due to the presence of sphere a is then35

βFab(r) = −σ 2
1b

∫
d	s cos θsρ

(r)(rb + σ1b̂s), (3.2)

where d	s = sin θ sdθ sdϕs is the elementary solid an-
gle spanned by ŝ taking the polar axis along r̂, ρ(r)(q)
= 〈∑i δ(q − ri)〉 is the local density of the solvent in the
presence of the two solute spheres at a center-to-center dis-
tance r, and 〈···〉 is a thermal average.

The expression (3.2) for the depletion force is formally
independent of the interaction between the solvent particles
and holds as long as we have a hard-sphere interaction be-
tween the solvent and the two solute spheres. Clearly, due
to the axial symmetry of the solvent fluid, ρ(r)(rb + σ1b̂s)
= 〈∑i δ(σ1b̂s − si)〉, with si = ri − rb, is a function of σ1b

and θ s only. Notice that, by Newton’s third law, we must have
Fab = −Fba. In terms of the potential of mean force βuab(r)
= −ln gab(r), where gab(r) is the solute-solute radial distribu-
tion function in the presence of the solvent, we have

βFab(r) = −β
duab(r)

dr
= g′

ab(r)

gab(r)
. (3.3)

In MC simulations, we can calculate the force by means of

βFab(r) = − σ 2
1b

〈∑
i

∫
d	s cos θsδ(σ1b̂s − si)

〉

≈ − 3σ 2
1b

〈∑
i


si− ε
2 ,si+ ε

2
(σ1b) cos θsi(

si + ε
2

)3 − (
si − ε

2

)3

〉
, (3.4)

where the boxcar function 
a,b(x) = 1 if a ≤
x < b and zero otherwise, ε is a discretiza-
tion of the s variable, and in the second line of
Eq. (3.4) we have discretized the radial part of the Dirac delta
function. We can also rewrite Eq. (3.4), by neglecting the
term in ε3 in the denominator, as follows:

F ∗
ab(r) ≡ σ1βFab(r) ≈ −σ1I

(r)(σ1b), (3.5)

where F ∗
ab(r) is the dimensionless force and

I (r)(s) =
〈∑

i


s− ε
2 ,s+ ε

2
(si) cos θsi

ε

〉
. (3.6)

In the simulations, I(r)(s) is evaluated at s = sκ = σ 1b + (2κ

+ 1)ε/2 with κ = 0, 1, 2, . . . . The force F ∗
ab(r) is obtained by

extrapolating the data at the contact value s = σ 1b.

2. Multicomponent solvent

In a multicomponent solvent, we have ρ(r)(q)
= ∑

μ ρ(r)
μ (q) with ρ(r)

μ (q) = 〈∑i δμi ,μδ(q − ri)〉, where
the Greek index stands for the species, the Roman index
stands for the particle label, and μi denotes the species of
particle i. The depletion force is now given by

βFab(r) = −
∑

μ

σ 2
μb

∫
d	s cos θsρ

(r)
μ (rb + σμb̂s). (3.7)

The output from the MC simulations are the functions

I (r)
μ (s) =

〈∑
i

δμ,μi


s− ε
2 ,s+ ε

2
(si) cos θsi

ε

〉
, (3.8)

calculated at s = sκ = σμb + (2κ + 1)ε/2 with κ = 0, 1, 2,
. . . , so that we now have

F ∗
ab(r) = σ1βFab(r) = −σ1

∑
μ

I (r)
μ (σμb). (3.9)

B. Rational-function approximation

Within the RFA7, 27, 28, 37 one explicitly obtains the
Laplace transform Gab(s) of rgab(r) in the solute infinite-
dilution limit (xa → 0 and xb → 0) of a quaternary mixture
where the solvent is made of species 1 and 2 and the solute
is made of species a = 3 and b = 4. Then, from Eq. (3.3) we
have

βFab(r) = [rgab(r)]′

rgab(r)
− 1

r

=L−1[sGab(s) − e−σabsσabgab(σ+
ab)]

L−1[Gab(s)]
− 1

r
, (3.10)

where L−1 stands for an inverse Laplace transform. In this
equation, it is understood that r > σ ab since the force is of
course singular in the region 0 ≤ r ≤ σ ab. Thus, given that
L−1[e−σabs] = δ(r − σab), we may rewrite

βFab(r) = L−1[sGab(s)]

L−1[Gab(s)]
− 1

r
, r > σab. (3.11)

As discussed in Ref. 27, the RFA inverse Laplace trans-
forms for NAHS mixtures could in principle present a spu-
rious behavior in the shell min (σ ab, τ ab) ≤ r ≤ max (σ ab,
τ ab), where τ ab is the minimum of the list of values σ bk − (σ k

− σ a)/2 (k = 1–4) that are different from σ ab. In our case,
however, since the solute-solvent interaction is additive, we
have σ bk − (σ k − σ a)/2 = σ ab for all k, so that τ ab = σ ab and
the spurious behavior vanishes.

In the limit σ b/σ a → ∞, the solute sphere b is felt
as a planar hard wall by both a solvent particle and by
the solute particle a. Before taking the limit we intro-
duce the shifted radial distribution function γ ab(D) = gab(D
+ σ ab) for a surface-to-surface distance D ≥ 0. In Laplace
space,

Gab(s) = e−σabs[σab�ab(s) − �′
ab(s)], (3.12)

where �ab(s) is the Laplace transform of γ ab(D) and �′
ab(s)

= d�ab(s)/ds. In the wall limit, Eq. (3.12) yields

�aw(s) = lim
σb/σa→∞

2

σb

eσabsGab(s). (3.13)

The corresponding expression for the depletion force
is

βFaw(D) =γ ′
aw(D)

γaw(D)
= L−1[s�aw(s)−γaw(0)]

L−1[�aw(s)]

=L−1[s�aw(s)]

L−1[�aw(s)]
, (3.14)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

151.51.162.207 On: Sun, 13 Jul 2014 20:57:01



244513-4 R. Fantoni and A. Santos J. Chem. Phys. 140, 244513 (2014)

where in the last step we have taken into account that
D > 0 and thus the term coming from L−1[1] = δ(D) can
be ignored.

Appendix A gives some details on how to carry out the
solute infinite-dilution limit analytically, while Appendix B
shows how to subsequently carry out the wall limit. Once
Gab(s) and �aw(s) are known, the inverse Laplace trans-
forms may be carried out numerically following the recipe of
Ref. 38. When the solvent nonadditivity is switched off
(� = 0) our RFA approach reduces to the usual PY
approximation.7, 27

The RFA for NAHS systems inherits from the PY ap-
proximation for AHS fluids the possibility of yielding non-
physical results near contact for the big-big correlation func-
tion in the case of strongly asymmetric mixtures.39–41 As
proposed by Henderson,42 a simple and convenient way
of circumventing this difficulty consists in the replacement
g → exp (g − 1). Thus, in order to correct the breakdown
of the theory near solute contact, we have also considered an
“exponential” RFA (exp-RFA) approximation where21

g
exp-RFA
ab (r) = exp

[
gRFA

ab (r) − 1
]
. (3.15)

IV. SIMULATION DETAILS

We performed canonical MC simulations in a paral-
lelepipedal box (−H/2 < x < H/2, −L/2 < y < L/2, −L/2
< z < L/2) with periodic boundary conditions. The two solute
spheres a and b are fixed in space, centered at (− r/2, 0, 0) and
(r/2, 0, 0), respectively, as shown in Fig. 1. The solvent is in
general a binary NAHS mixture, but we will always assume
additivity between the solute and the solvent. According to
the Metropolis algorithm,43 a solvent particle move is rejected
whenever it overlaps with another solvent particle or with any
of the two solute spheres. The maximum random particle dis-
placement was chosen so as to have acceptance ratios close to
50%. During the run we measured the shell integrals I (r)

μ (s)
of Eq. (3.8) and the local solvent density. We chose H and
L large enough so that away from the two solute spheres the
local solvent density shows a bulk-like plateau and thus the

σb

σa

L/2

−H/2

−L/2

H/2

x

y,z

−r/2

s

θs

r/2

FIG. 1. Schematic simulation arrangement. The simulation box is the par-
allelepiped −H/2 < x < H/2, −L/2 < y < L/2, −L/2 < z < L/2 with pe-
riodic boundary conditions. H and L are chosen large enough so as to have
a solvent density exhibiting a bulk-like plateau away from the two solute
spheres.

2.0

2.5

3.0

3.5

4.0

4.5

3.0 3.5 4.0 4.5

σ 1
I μ(r

) (s
)

s/σ1

μ=1
μ=2

FIG. 2. Shell integrals I
(r)
μ (s) at r/σ 1 = 5 for the case x1 = 1

2 , σ 2/σ 1 = 1, �

= 0, σ b/σ a = 1, σ a/σ 1 = 5. Here, H/σ 1 = 18, L/σ 1 = 12, N = 1134. The bulk
packing fraction is η ≈ 0.239(5) and the simulation time was τ = 4 × 105N
single particle moves. The lines are least-square quartic fits on the interval
3 ≤ s/σ 1 ≤ 4 used to extrapolate I

(r)
μ (s) at contact (s/σ 1 = σ 1b/σ 1 = 3).

The estimated force is then found to be F ∗
ab(r) = −σ1

[
I

(r)
1 (σ1b) + I

(r)
2 (σ2b)

]
≈ −7.78(8). This case is close to the one in Fig. 6(b) of Ref. 33.

solvent density in a cubic cell of side � centered at (x, y, z)
= ( − H/2, L/2, L/2) can be accepted as a good estimate of the
bulk density ρ.

A typical output for the shell integrals from a single sim-
ulation is shown in Fig. 2. The uncertainty on each measured
value at a given s is determined as

√
σ 2

v K/τ where τ is the
number of single particle moves, σ 2

v is the variance of the
measures during the run, and K is an estimate of the corre-
lation time of the sequence of measurements assumed as in-
dependent from s. In order to determine the depletion force
according to Eq. (3.9), we need to find the contact values
I (r)
μ (σμb). We do this with a least-square quartic fit of the

shell integrals near contact, as shown in Fig. 2. Since the sol-
vent binary mixture for the choice of the model parameters in
Fig. 2 reduces to a one-component system, no partial demix-
ing is possible, so that the 1 ↔ 2 symmetry implies the con-
sequent equality of the two shell integrals. This is reasonably
well satisfied within the error estimates. The slight asymmetry
observed in Fig. 2 favors one species or the other, in different
runs, with equal probabilities.

In the study of the wall limit σ b/σ a → ∞, we removed
the periodic boundary conditions along the x direction and
placed a hard wall at x = −H/2 and another one at x = H/2,
rejecting solvent-particle moves producing an overlap with
the walls. The solute sphere a was placed on the x axis at
x = −H/2 + D + σ a/2 and the depletion force felt by the so-
lute impurity x̂Fwa(D) was calculated as a function of D > 0.
The solvent bulk density was evaluated in a cubic cell of side
� centered at (x, y, z) = (D/2 + σ a/2, L/2, L/2).

One can take into account the volume excluded to the
solvent particles by the solutes to define a (nominal) average
packing fraction η = η1 + η2, where

ημ =
π
6 Nxμσ 3

μ

HL2 − π
6

(
σ 3

μa + σ 3
μb

) (4.1)
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if σb/σa = finite and

ημ =
π
6 Nxμσ 3

μ

(H − σμ)L2 − π
6 σ 3

μa

(4.2)

if σ b/σ a = ∞.
In all the cases presented in Sec. V, we took N = 500

solvent particles, box sides H/σ 1 = 18, L/σ 1 = 12, a number
τ = 1.4 × 106N of single particle moves, and a discretization
step ε/σ 1 = 0.05. The side of the cell employed to evaluate
the bulk density was � = σ 1.

V. RESULTS

In this section, we present our results for four represen-
tative classes of systems: two symmetric solute impurities in
a symmetric (class S) or asymmetric (class A) solvent, and
a planar wall and a solute impurity in a symmetric (class
wS) or asymmetric (class wA) solvent. For each class, we
have considered three solvent nonadditivities: zero, positive,
and negative. This will allow us to assess the effect of sol-
vent nonadditivity on the depletion force between the impu-
rity particles or between the impurity and the wall. The RFA
predictions will be compared with our MC simulations. The
parameters characterizing the 12 different systems are given
in Table I. The last column gives the average packing fraction
η = η1 + η2 defined by Eqs. (4.1) (solute-solute systems) and
(4.2) (wall-solute systems). In the asymmetric-solvent cases
(σ2/σ1 = 3

2 ), the value of the mole fraction (x1 = 193
250 ) has

been chosen such that both species occupy practically equal
volumes (x1σ

3
1 /x2σ

3
2 = 1.003).

As an illustration, Fig. 3 shows a snapshot of an equili-
brated MC configuration of system S0 with the two identical
solute particles at contact.

A. Symmetric solvent and symmetric solute
impurities

We first consider a symmetric 1 ↔ 2 solvent (systems
S0, S+, S−). In general, for positive nonadditivity (� > 0)
and sufficiently high densities, the solvent may undergo
demixing,32 so that in the simulation we would get I

(r)
1 (s)

�= I
(r)
2 (s) by spontaneous symmetry breaking. On the other

TABLE I. Values of the parameters defining the 12 systems considered in
this work.

Label σ b/σ a σ a/σ 1 x1 σ 2/σ 1 � η

S0 1 5 1
2 1 0 0.1021

S+ 1
4

S− − 1
4

A0 1 5 193
250

3
2 0 0.1576

A+ 1
5

A− − 1
5

wS0 ∞ 5 1
2 1 0 0.1076

wS+ 1
4

wS− − 1
4

wA0 ∞ 5 193
250

3
2 0 0.1685

wA+ 1
5

wA− − 1
5

FIG. 3. Snapshot of an equilibrated MC configuration of system S0. The
solutes are the two big red spheres while the solvent binary mixture is made
of small light and dark blue spheres.

hand, if, at a given density, the positive nonadditivity is not
too large, the solvent will be in a mixed state and the equality
of the two shell integrals is expected. However, we found that,
even in states with a mixed solvent in the bulk, the solvent
may be partially demixed in the region between the two solute
particles because of density compression effects.35 This may
be responsible for an asymmetry in the two shell integrals,
which is expected to be maximal near a surface-to-surface
distance of the two solute impurities equal to one solvent di-
ameter. In order to avoid this effect, we chose a sufficiently
small value for the nonadditivity (system S+).

The first columns of Table II present the simulation re-
sults for the depletion force and for the bulk packing fraction
of systems S0, S+, and S− as functions of the surface-to sur-
face distance D = r − σ ab. We observe that the bulk packing
fraction is weakly dependent on D and on �, being slightly
larger than the average value η.

The MC results for the depletion force are compared with
the semi-analytical RFA predictions in Fig. 4. We recall that
the RFA theory reduces to the PY theory in the additive case
(� = 0), so the middle solid and dashed lines in Fig. 4 ac-
tually represent the PY and exp-PY predictions, respectively.
As we can see, those curves for the additive system S0 agree
quite well with the simulation data at and beyond a surface-
to-surface separation between the two solute impurities equal
to half the solvent diameter, D � σ 1/2. In that region, our
RFA theory successfully accounts for the influence of the sol-
vent nonadditivity on the depletion force. A specially good
agreement is observed at D = σ 1, where the theory predicts
a kink in the force stemming from the first spatial derivative
of the solute-solute radial distribution function. On the other
hand, a less satisfactory result is observed near contact of the
impurities (D < σ 1/2), where both the PY (system S0) and
the RFA (systems S+ and S−) theories exhibit an artificial up-
ward bending of the curves (instead of the correct quasilin-
ear behavior), implying a force less attractive than it should
be. This is, at least qualitatively, corrected by the exp-PY and
exp-RFA versions of the theories. Another possible correction
could be to develop the second-order RFA,44 which is known
to work well in the additive solvent case.7
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TABLE II. MC results for the symmetric cases S0, S+, S−, and the asymmetric cases A0, A+, A− (see Table I). D is the surface-to-surface separation between
the two solutes and η is the bulk packing fraction of the solvent.

S0 S+ S− A0 A+ A−

D/σ 1 F ∗
ab η F ∗

ab η F ∗
ab η F ∗

ab η F ∗
ab η F ∗

ab η

0.00 − 2.35(3) 0.109(1) − 2.59(2) 0.108(1) − 2.22(2) 0.110(1) − 3.09(3) 0.167(1) − 3.39(3) 0.169(1) − 2.86(2) 0.168(1)
0.25 − 1.71(2) 0.109(1) − 1.73(3) 0.109(1) − 1.59(2) 0.110(1) − 2.26(2) 0.166(1) − 2.43(4) 0.169(1) − 2.23(3) 0.171(1)
0.50 − 1.03(2) 0.109(1) − 0.93(3) 0.109(1) − 1.01(3) 0.110(1) − 1.40(3) 0.168(1) − 1.33(3) 0.170(1) − 1.41(2) 0.169(1)
0.75 − 0.30(3) 0.109(1) − 0.00(2) 0.109(1) − 0.40(2) 0.110(1) − 0.56(3) 0.169(1) − 0.24(3) 0.169(1) − 0.68(3) 0.170(1)
0.84 − 0.03(2) 0.109(1) 0.25(3) 0.108(1) − 0.12(3) 0.110(1) − 0.22(3) 0.168(1) 0.13(3) 0.168(1) − 0.35(3) 0.169(1)
0.92 0.26(2) 0.109(1) 0.49(3) 0.108(1) 0.06(3) 0.110(1) 0.10(2) 0.168(1) 0.55(3) 0.168(1) − 0.10(3) 0.170(1)
1.00 0.36(3) 0.109(1) 0.66(3) 0.109(1) 0.21(3) 0.109(1) 0.45(2) 0.171(1) 0.95(4) 0.168(1) 0.17(2) 0.169(1)
1.08 0.32(4) 0.110(1) 0.63(4) 0.109(1) 0.27(3) 0.110(1) 0.50(4) 0.169(1) 0.76(6) 0.171(1) 0.15(4) 0.170(1)
1.16 0.17(4) 0.109(1) 0.28(3) 0.108(1) 0.08(3) 0.110(1) 0.21(4) 0.169(1) 0.36(5) 0.165(1) 0.03(3) 0.170(1)
1.25 − 0.02(4) 0.109(1) 0.01(4) 0.108(1) − 0.02(3) 0.110(1) 0.07(5) 0.168(1) 0.23(4) 0.170(1) − 0.07(3) 0.170(1)
1.50 − 0.01(4) 0.110(1) 0.02(4) 0.109(1) − 0.03(3) 0.110(1) 0.22(4) 0.169(1) 0.48(5) 0.166(1) 0.14(4) 0.170(1)
1.75 0.01(2) 0.109(1) − 0.13(4) 0.109(1) − 0.05(3) 0.109(1) − 0.07(4) 0.169(1) − 0.20(5) 0.168(1) 0.01(4) 0.170(1)
2.00 0.01(3) 0.109(1) − 0.11(3) 0.109(1) − 0.00(2) 0.110(1) − 0.10(3) 0.169(1) − 0.04(3) 0.168(1) − 0.02(3) 0.170(1)
2.25 − 0.03(3) 0.109(1) − 0.06(3) 0.108(1) − 0.02(3) 0.110(1) − 0.04(3) 0.170(1) − 0.12(4) 0.171(1) − 0.06(3) 0.171(1)
2.50 0.02(2) 0.109(1) 0.04(2) 0.109(1) − 0.00(2) 0.109(1) − 0.00(3) 0.169(1) 0.09(3) 0.167(1) − 0.02(2) 0.169(1)

The positive nonadditivity enhances the depletion force
and the negative nonadditivity inhibits it. These trends for the
effect of the solvent nonadditivity on the depletion force could
be expected from the following simple argument. To first or-
der in density, the bulk compressibility factor of the solvent
is 1 + B2ρ, with B2 = (2π/3)

∑
i,j xixjσ

3
ij being the second

virial coefficient. Therefore, in the low-density regime, one
would expect the NAHS solvent with a packing fraction η to
behave similarly to an effective AHS solvent with an effective
packing fraction

ηeff = η

∑
i,j xixjσ

3
ij∑

i,j xixj [(σi + σj )/2]3
. (5.1)

Thus, introducing a positive nonadditivity in the solvent is
qualitatively analogous to increasing its density, which in turn
produces an enhancement of the solute-solute depletion force.
Of course, a negative nonadditivity produces the opposite
effect.

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0 2.5

F* ab
(D

)

D/σ1

MC Δ=0
MC Δ=+1/4
MC Δ=−1/4

RFA
exp-RFA

FIG. 4. Depletion force between two identical big hard spheres immersed in
a solvent binary mixture of small hard spheres, as a function of their surface-
to-surface separation, for systems S0, S+, and S− (see Table I). The bulk
packing fraction used to obtain the (exp-)RFA results was taken as η = 0.109
in all cases. The MC results are the ones of Table II.

B. Asymmetric solvent and symmetric
solute impurities

Next, we consider the asymmetric-solvent systems A0,
A+, and A−. In those cases, the two shell integrals are obvi-
ously different, i.e., I

(r)
1 (s) �= I

(r)
2 (s). As before, we want to

measure the effect on the depletion force of adding a certain
nonadditivity to the solvent.

The MC values for the depletion force and the bulk pack-
ing fraction are given in Table II. As in the symmetric-solvent
cases, the bulk packing fractions are slightly larger than the
nominal average values, but now the influence of the solute-
solute separation on the bulk values is more pronounced.

Figure 5 compares the MC and RFA results for systems
A0, A+, and A−. As in the symmetric case, RFA=PY for the
AHS solvent (� = 0). Now, in addition to a kink in the de-
pletion force at D = σ 1, the RFA predicts a second kink at
D = σ 2, with smooth oscillations around zero beyond that
point. Again, the variation of the depletion force with distance

-3.0

-2.0

-1.0

0.0

1.0

0.0 0.5 1.0 1.5 2.0 2.5

F* ab
(D

)

D/σ1

MC Δ=0
MC Δ=+1/5
MC Δ=−1/5

RFA
exp-RFA

FIG. 5. Depletion force between two identical big hard spheres immersed in
a solvent binary mixture of small hard spheres, as a function of their surface-
to-surface separation, for systems A0, A+, and A− (see Table I). The bulk
packing fraction used to obtain the (exp-)RFA results was taken as η = 0.170
in all cases. The MC results are the ones of Table II.
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TABLE III. MC results for the symmetric cases wS0, wS+, wS−, and the asymmetric cases wA0, wA+, wA− (see Table I). D is the surface-to-surface
separation between the wall and the solute sphere and η is the bulk packing fraction of the solvent.

wS0 wS+ wS− wA0 wA+ wA−

D/σ 1 F ∗
aw η F ∗

aw η F ∗
aw η F ∗

aw η F ∗
aw η F ∗

aw η

0.00 − 4.44(3) 0.110(1) − 4.68(3) 0.108(1) − 4.10(2) 0.111(1) − 5.73(2) 0.172(1) − 6.20(2) 0.169(1) − 5.20(2) 0.170(1)
0.25 − 3.29(2) 0.109(1) − 3.30(2) 0.108(1) − 3.11(2) 0.110(1) − 4.34(3) 0.168(1) − 4.49(3) 0.168(1) − 4.02(1) 0.172(1)
0.50 − 1.99(2) 0.109(1) − 1.82(3) 0.108(1) − 2.01(2) 0.111(1) − 2.70(2) 0.171(1) − 2.55(3) 0.165(1) − 2.69(2) 0.171(1)
0.75 − 0.66(2) 0.109(1) − 0.11(3) 0.108(1) − 0.79(3) 0.110(1) − 1.03(3) 0.170(1) − 0.32(4) 0.168(1) − 1.26(3) 0.172(1)
0.84 − 0.06(2) 0.110(1) 0.60(3) 0.108(1) − 0.38(3) 0.111(1) − 0.30(3) 0.170(1) 0.56(3) 0.170(1) − 0.72(3) 0.172(1)
0.92 0.42(3) 0.109(1) 1.06(3) 0.108(1) 0.05(2) 0.110(1) 0.28(3) 0.169(1) 1.24(3) 0.169(1) − 0.22(3) 0.172(1)
1.00 0.95(3) 0.110(1) 1.66(2) 0.108(1) 0.59(3) 0.110(1) 1.00(3) 0.168(1) 2.01(3) 0.167(1) 0.34(3) 0.171(1)
1.08 0.83(5) 0.109(1) 1.42(6) 0.108(1) 0.52(4) 0.110(1) 0.92(7) 0.168(1) 1.91(10) 0.165(1) 0.43(5) 0.172(1)
1.16 0.33(5) 0.109(1) 0.44(7) 0.108(1) 0.19(4) 0.110(1) 0.41(8) 0.168(1) 0.99(10) 0.168(1) 0.16(5) 0.172(1)
1.25 − 0.06(5) 0.110(1) 0.04(7) 0.109(1) − 0.05(5) 0.110(1) 0.11(8) 0.169(1) 0.54(10) 0.167(1) − 0.04(7) 0.171(1)
1.50 0.08(6) 0.110(1) − 0.02(7) 0.109(1) 0.12(5) 0.110(1) 0.55(7) 0.171(1) 0.93(9) 0.165(1) 0.38(7) 0.172(1)
1.75 − 0.06(5) 0.109(1) − 0.17(6) 0.109(1) − 0.07(4) 0.110(1) − 0.15(7) 0.170(1) − 0.56(8) 0.167(1) − 0.07(6) 0.171(1)
2.00 − 0.00(2) 0.110(1) − 0.06(3) 0.108(1) 0.01(2) 0.110(1) − 0.04(5) 0.171(1) − 0.28(5) 0.167(1) − 0.02(3) 0.171(1)
2.25 − 0.03(3) 0.109(1) 0.05(3) 0.108(1) 0.00(2) 0.110(1) − 0.05(4) 0.168(1) − 0.16(4) 0.167(1) − 0.00(3) 0.172(1)
2.50 0.05(2) 0.109(1) 0.03(3) 0.108(1) − 0.03(2) 0.111(1) 0.07(3) 0.170(1) − 0.01(3) 0.165(1) 0.01(2) 0.172(1)

increases (decreases) if a positive (negative) nonadditivity is
included, as expected from the argument behind Eq. (5.1).
Analogous to Fig. 4, a reasonable agreement between our the-
oretical approximation and the simulation results is observed
for D � σ 1/2, but the agreement breaks down when the so-
lutes are near contact. On the other hand, the exp-RFA ap-
proximation has the correct linear behavior near contact, even
if it underestimates the contact values. Note also that, while
RFA and exp-RFA are practically indistinguishable for D �
σ 1/2 in Fig. 4, both approximations are slightly different in
the region near the kink at D = σ 1 in the case A+, RFA being
more accurate than exp-RFA.

C. A wall and one solute impurity in
a symmetric solvent

We now explore the cases of extreme solute asymmetry
in the limit σ b/σ a → ∞, where sphere b becomes a planar
hard wall.

We start with the cases of a symmetric solvent (systems
wS0, wS+, and wS−). The MC data for the depletion force
and the bulk packing fraction are listed in the first columns
of Table III. Since the solvents in systems wS0, wS+, and
wS− are in the same bulk state (except for small changes of
η) as in systems S0, S+, and S−, respectively, we can test
the Derjaguin approximation45 F ∗

aa(D) ≈ 1
2F ∗

aw(D). As can
be seen from comparison of Tables II and III, the Derjaguin
approximation is rather well satisfied in our simulations, even
in the cases of NAHS solvents, 1

2F ∗
aw(D) being typically

1%–10% smaller than F ∗
aa(D).

Theory and simulation are compared in Fig. 6. Not sur-
prisingly, our RFA approximation (which is again equivalent
to the PY approximation in the case � = 0) performs quite
well for D � σ 1/2 but it breaks down near contact between
the wall and the solute spherical impurity, this effect being
now more important than in the cases of two identical solutes
(Fig. 4). On the other hand, the exp-RFA approximation ex-

hibits a better (quasilinear) behavior near contact, although it
underestimates the contact values. Also, analogous to what is
observed in Fig. 5, exp-RFA is less accurate than RFA near
the kink at D = σ 1 when a positive nonadditivity is present.

D. A wall and one solute impurity in
an asymmetric solvent

To complete the picture, we finally consider the wall-
solute force in a NAHS solvent (systems wA0, wA+, and
wA−). The corresponding MC data can be found in Table III.
The Derjaguin approximation F ∗

aa(D) ≈ 1
2F ∗

aw(D) is again
well satisfied, although the deviations are slightly larger than
in the wS cases, 1

2F ∗
aw(D) being about 4%–10% smaller than

F ∗
aa(D).

As Fig. 7 shows, in contrast to the cases S+, A+, and
wS+ plotted in Figs. 4–6, respectively, the RFA for a positive
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D/σ1
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MC Δ=+1/4
MC Δ=−1/4
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FIG. 6. Depletion force between a hard wall and a big hard sphere im-
mersed in a solvent binary mixture of small hard spheres, as a function of
their surface-to-surface separation, for systems wS0, wS+, and wS− (see
Table I). The bulk packing fraction used to obtain the (exp-)RFA results was
taken as η = 0.109 in all cases. The MC results are the ones of Table III.
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FIG. 7. Depletion force between a hard wall and a big hard sphere immersed
in a solvent binary mixture of small hard spheres, as a function of their
surface-to-surface separation, for systems wA0, wA+, and wA− (see Table
I). The bulk packing fraction used to obtain the (exp-)RFA results was taken
as η = 0.170 in all cases. The MC results are the ones of Table III.

nonadditivity (system wA+) is not able to capture accurately
the values of the depletion force in the region near the first
kink at D = σ 1, while the related approximation exp-RFA
does. Moreover, the artificial upward bend of the PY curve
(� = 0) and of the two RFA curves (� = ± 1

5 ) in the region
D � σ 1/2 is much more dramatic than in Figs. 4–6. Again, the
exp-RFA lines tend to correct this behavior but they underes-
timate the contact values.

VI. CONCLUSIONS

We have studied in this paper the mutual depletion force
acting on two solute hard spheres immersed in a solvent
consisting in a binary NAHS mixture. We have employed
two complementary tools: canonical MC simulations and the
semi-analytical RFA (which is fully equivalent to the PY so-
lution when the solvent nonadditivity is switched off). Four
different settings have been considered: two symmetric so-
lutes in a symmetric and in an asymmetric solvent, and two
extremely asymmetric solutes (in the limit where one of the
two spheres reduces to a planar hard wall) again in a sym-
metric and in an asymmetric solvent. For each class of sys-
tems, we have chosen three possibilities: zero nonadditivity,
positive nonadditivity, and negative nonadditivity. In all the
systems, the solvent remained in a mixed state.

We have found that the RFA performs reasonably well
in all cases for a surface-to-surface distance D greater than
the radius of the smallest solvent particles, except in the case
wA+ of a wall with an asymmetric solvent with positive non-
additivity, where the theory overestimates the height of the
first kink. The approximation in all cases breaks down at and
near contact (D = 0). To correct this, we have also consid-
ered an exp-RFA, which shows the correct quasilinear behav-
ior near contact, even if it is still not able to quantitatively
capture the contact values. The approximations correctly pre-
dict kinks in the depletion force when D equals any of the two
solvent diameters. Our results show how in all cases a positive
solvent nonadditivity enhances the depletion force whereas a

negative one inhibits it. Moreover, the Derjaguin approxima-
tion is well satisfied in our simulations, even for the nonaddi-
tive solvent.

As possible further developments of our study, we plan
to try to correct the theoretical approximation near contact
and to study the behavior of the force as one approaches the
demixing transition of the solvent on the critical isochore.
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APPENDIX A: THE SOLUTE INFINITE-DILUTION LIMIT
IN THE RFA

For convenience, we here use Roman indexes for the
species instead of Greek indexes as done in the main text.
In Ref. 27, the following proposal for the structural properties
of an n-component NAHS fluid defined through the Laplace
transform Gij(s) of rgij(r) was given:

Gij (s) = s−2
n∑

k=1

e−σiksLik(s)Bkj (s), (A1)

with

B−1(s) = I − A(s), (A2)

Aij (s) = 2πρxi

s3

[
Nij (s)eaij s − Lij (s)e−σij s

]
, (A3)

where I is the unit matrix,

Lij (s) ≡ L
(0)
ij + L

(1)
ij s, (A4)

Nij (s) ≡ L
(0)
ij

(
1 − bij s + b2

ij s
2

2

)
+ L

(1)
ij s(1 − bij s), (A5)

bij ≡ σij + aij , aij ≡ 1

2
(σi − σj ). (A6)

Equations (A1)–(A5) provide the explicit s-dependence of the
Laplace transform Gij(s), but it still remains to determine the
two sets of parameters L

(0)
ij and L

(1)
ij . This is done by en-

forcing the physical requirements27 lims → 0s2Gij(s) = 1 and
lims → 0s−1[s2Gij(s) − 1] = 0. The results are

L
(0)
ij = Sj , L

(1)
ij = Tj + σijSj , (A7)

where

Sj ≡ 1 − πρ�j(
1 − πρ�j

) (
1 − πρ�j

) − π2ρ2μj |2,0	j

, (A8)
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Tj ≡ πρ	j(
1 − πρ�j

) (
1 − πρ�j

) − π2ρ2μj |2,0	j

, (A9)

�j ≡ μj |2,1 − 1

3
μj |3,0, (A10)

�j ≡ 2

3
μj |3,0 − μj |2,1, (A11)

	j ≡ μj |3,1 − μj |2,2 − 1

4
μj |4,0, (A12)

and we have called

μj |p,q ≡
n∑

k=1

xkb
p

kjσ
q

kj . (A13)

We now choose our quaternary mixture (n = 4) in such a
way that the first two species (i = 1 and i = 2) describe the
solvent and the last two species (i = 3 = a and i = 4 = b)
describe the solute. Then, in the infinite-dilution limit xa → 0
and xb → 0 we have that

B−1 =

⎛⎜⎜⎜⎝
(B−1)11 (B−1)12 −A1a −A1b

(B−1)21 (B−1)22 −A2a −A2b

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , (A14)

and thus

B =

⎛⎜⎜⎜⎝
B11 B12 C1a C1b

B21 B22 C2a C2b

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎠ , (A15)

where

Cij =
2∑

k=1

BikAkj , i = 1, 2 and j = a, b. (A16)

We have reduced the inversion of the original 4 × 4 matrix
B−1 to the inversion of just the 2 × 2 submatrix corresponding
to the solvent.

We then find

s2Gab(s) = e−σabsLab(s) +
2∑

k=1

e−σaksLak(s)Ckb(s), (A17)

where now μj |p,q = ∑2
k=1 xkb

p

kjσ
q

kj .

APPENDIX B: THE WALL LIMIT IN THE RFA

Taking the limit σ b → ∞, we find from Eq. (A17),

�aw(s) = lim
σb→∞

2

σb

eσabsGab(s)

= 2

s2

[
L̃aw(s) +

2∑
k=1

Lak(s)C̃kw(s)

]
, (B1)

where

L̃aw(s) ≡ lim
σb→∞

Lab(s)

σb

, (B2)

C̃kw(s) ≡ lim
σb→∞

eakbsCkb(s)

σb

, k = 1, 2. (B3)

1M. Dijkstra, R. van Roij, and R. Evans, Phys. Rev. Lett. 82, 117
(1999).

2R. Roth, R. Evans, and A. A. Louis, Phys. Rev. E 64, 051201 (2001).
3A. A. Louis and R. Roth, J. Phys.: Condens. Matter 13, L777 (2001).
4C. D. Estrada-Alvarez, E. López-Sánchez, G. Pérez-Ángel, P. González-
Mozuelos, J. M. Méndez-Alcaraz, and R. Castañeda Priego, J. Chem. Phys.
140, 026101 (2014).

5S. Asakura and F. Oosawa, J. Chem. Phys. 22, 1255 (1954).
6R. Roth, R. Evans, and S. Dietrich, Phys. Rev. E 62, 5360 (2000).
7S. B. Yuste, A. Santos, and M. López de Haro, J. Chem. Phys. 128, 134507
(2008); 140, 179901 (2014).

8D. J. Ashton, N. B. Wilding, R. Roth, and R. Evans, Phys. Rev. E 84,
061136 (2011).

9R. Castañeda-Priego, A. Rodríguez-López, and J. M. M. Alcaraz, J. Phys.:
Condens. Matter 15, S3393 (2003).

10T. Biben, P. Bladon, and D. Frenkel, J. Phys.: Condens. Matter 8, 10799
(1996).

11P. Germain and S. Amokrane, Phys. Rev. Lett. 102, 058301 (2009).
12M. Sikorski, A. R. Sandy, and S. Narayanan, Phys. Rev. Lett. 106, 188301

(2011).
13P.-M. König, R. Roth, and S. Dietrich, Phys. Rev. E 74, 041404 (2006).
14W. Li, T. Yang, and H. Ma, J. Chem. Phys. 128, 044910 (2008).
15D. Henderson, A. D. Trokhymchuk, and D. T. Wasan, J. Mol. Liq. 112, 21

(2004).
16R. Roth and M. Kinoshita, J. Chem. Phys. 125, 084910 (2006).
17Y. Mao, J. Phys. II 5, 1761 (1995).
18X. L. Chu, A. D. Nikolov, and D. T. Wasan, Langmuir 12, 5004 (1996).
19S. A. Egorov, Phys. Rev. E 70, 031402 (2004).
20G. Cinacchi, Y. Martínez-Ratón, L. Mederos, G. Navascués, A. Tani, and

E. Velasco, J. Chem. Phys. 127, 214501 (2007).
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