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A class of binary mixtures of Janus fluids formed by colloidal spheres with the hydrophobic hemi-
spheres constrained to point either up or down are studied by means of Gibbs ensemble Monte Carlo
simulations and simple analytical approximations. These fluids can be experimentally realized by
the application of an external static electrical field. The gas-liquid and demixing phase transitions
in five specific models with different patch-patch affinities are analyzed. It is found that a gas-liquid
transition is present in all the models, even if only one of the four possible patch-patch interactions
is attractive. Moreover, provided the attraction between like particles is stronger than between un-
like particles, the system demixes into two subsystems with different composition at sufficiently low
temperatures and high densities. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4827861]

I. INTRODUCTION

Engineering new materials through direct self-assembly
processes has recently become a new concrete possibility due
to the remarkable developments in the synthesis of patchy
colloids with different shapes and functionalities. Nowadays,
both the synthesis and the aggregation process of patchy col-
loids can be experimentally controlled with a precision and
reliability that were not possible until a few years ago.1–5

Within the general class of patchy colloids, a particularly
interesting case is provided by the so-called Janus fluid, where
the surface of the colloidal particle is evenly partitioned be-
tween the hydrophobic and the hydrophilic moieties, so that
attraction between two spheres is possible only if both hy-
drophobic patches are facing one another.6 Several experi-
mental and theoretical studies have illustrated the remarkable
properties of this paradigmatic case.7, 8

The behavior of patchy particles under external fields has
received recent attention.9, 10 By applying an external electri-
cal or magnetic field, appropriately synthesized dipolar Janus
particles may be made to align orientationally, so as to expose
their functionally active hemisphere either all up or all down
(see Ref. 9, Secs. 1.4.3.1 and 1.4.3.2, and references therein).
By mixing the two species one could have in the laboratory
a binary mixture of Janus particles where the functionally ac-
tive patch points in opposite directions for each species.

While theoretical studies have been keeping up with, and
sometimes even anticipated, experimental developments, the
complexities of the anisotropic interactions in patchy colloids
have mainly restricted these investigations to numerical sim-
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ulations, which have revealed interesting specificities in the
corresponding phase diagrams.

Motivated by the above scenario, we have recently in-
troduced a simplified binary-mixture model of a fluid of
Janus spheres (interacting via the anisotropic Kern–Frenkel
potential),11 where the hydrophobic patches on each sphere
could point only either up (species 1) or down (species
2).12 This orientational restriction, which is reminiscent of
Zwanzig’s model for liquid crystals, clearly simplifies the the-
oretical description while still distilling out the main features
of the original Janus model.

In the present paper, we generalize the above Janus fluid
model by assuming arbitrary values for the energy scales εij

of the attractive interactions associated with the four possible
pair configurations (see Fig. 1), which allows for a free tun-
ing of the strength of the patch-patch attraction. In some cases
this can effectively mimic the reduction of the coverage in the
original Kern–Frenkel model. Note that, in Fig. 1, εij is the
energy associated with the (attractive) interaction between a
particle of species i (at the left) and a particle of species j (at
the right) when the former is below the latter, with the arrow
always indicating the hydrophobic (i.e., attractive) patch. The
original Kern–Frenkel model then corresponds to ε12 > 0 and
ε11 = ε22 = ε21 = 0, whereas the full coverage limit is equiva-
lent to ε11 = ε22 = ε12 = ε21 > 0. On the other hand, the effect
of reducing the coverage from the full to the Janus limit, can
be effectively mimicked by fixing ε12 > 0 and progressively
decreasing ε21 and ε11 = ε22. Moreover, the class of models
depicted in Fig. 1 allows for an interpretation more general
and flexible than the hydrophobic-hydrophilic one. For in-
stance, one may assume that attraction is only possible when
patches of different type are facing one another (i.e., ε11 = ε22

> 0 and ε12 = ε21 = 0). As shown below, this will provide a
rich scenario of intermediate cases with a number of interest-
ing features in the phase diagram of both the gas-liquid and
the demixing transitions.

0021-9606/2013/139(17)/174902/9/$30.00 © 2013 AIP Publishing LLC139, 174902-1
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We emphasize the fact that in the simulation part of the
present study we will always assume “global” equimolarity,
that is, the combined number of particles of species 1 (N1) is
always equal to the combined number of particles of species
2 (N2), so that N1 = N2 = N/2, where N is the total number of
particles. On the other hand, the equimolarity condition is not
imposed on each coexisting phase.

The organization of the paper is as follows. The class
of models is briefly described in Sec. II. Next, in Sec. III
we present our Gibbs ensemble Monte Carlo (GEMC) results
for the gas-liquid and demixing transitions. The complemen-
tary theoretical approach is presented in Sec. IV. The paper is
closed with some concluding remarks in Sec. V.

II. DESCRIPTION OF THE MODELS

In our class of binary-mixture Janus models, particles of
species 1 (with a mole fraction x1) and 2 (with a mole fraction
x2 = 1 − x1) are dressed with two up-down hemispheres with
different attraction properties, as sketched in Fig. 1. The pair
potential between a particle of species i at r1 and a particle of
species j at r2 is

φij (r12) = ϕij (r12)�(z12) + ϕji(r12)�(−z12), (1)

where �(z) is the Heaviside step function, r12 = r2 − r1, z12

= z2 − z1, and

ϕij (r) =
⎧⎨
⎩

∞, 0 ≤ r < σ

−εij , σ ≤ r < σ + �

0, σ + � ≤ r

(2)

is a standard square-well (SW) potential of diameter σ , width
�, and energy depth εij, except that, in general, ε12 �= ε21. By
symmetry, one must have ε22 = ε11 (see Fig. 1), so that (for
given values of σ and �) the space parameter of the inter-
action potential becomes three-dimensional, as displayed in
Fig. 2. Except in the case of the hard-sphere (HS) model (εij

= 0), one can freely choose one of the non-zero εij to fix the
energy scale. Thus, we call ε = max i, j{εij} and use the three

1

1

1

2

2

1

2

2

FIG. 1. Sketch of a binary-mixture Janus fluid with up-down constrained
orientations. The energy scales of the attractive interactions are (from left to
right and from top to bottom) ε11, ε12, ε21, and ε22 = ε11, respectively. Here
we have adopted the convention that εij is the energy scale when a particle of
species i is “below” a particle of species j.

FIG. 2. Parameter space of the class of Janus models defined in the paper.

independent ratios εij/ε as axes in Fig. 2. The model repre-
sented by the coordinates (1, 1, 1) is the fully isotropic SW
fluid, where species 1 and 2 become indistinguishable. Next,
without loss of generality, we choose ε12 ≥ ε21. With those
criteria, all possible models of the class lie either inside the tri-
angle SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW.
One could argue that any point inside the cube displayed in
Fig. 2 may represent a distinct model, but this is not so. First,
the choice ε = max i, j{εij} restricts the models to those lying
on one of the three faces ε11/ε = 1, ε12/ε = 1, or ε21/ε = 1.
Second, the choice ε12 ≥ ε21 reduces the face ε21/ε = 1 to
the line SW-J0 and the face ε11/ε = 1 to the half-face SW-I0-
B0-SW. The vertices SW, I0, B0, A0, and J0 define the five
distinguished models we will specifically study. Those mod-
els, together with the HS one, are summarized in Table I.

The rationale behind our nomenclature for the models
goes as follows. Models with ε12 = ε21 are isotropic and
so we use the letter I to denote the isotropic models with
0 ≤ ε12/ε = ε21/ε ≤ 1 and ε11/ε = 1. Apart from them, the
only additional isotropic models are those with ε12/ε = ε21/ε
= 1 and 0 ≤ ε11/ε ≤ 1, and we denote them with the letter (J)
next to I. All the remaining models are anisotropic (i.e., ε12

�= ε21). Out of them, we use the letter A to denote the partic-
ular subclass of anisotropic models (0 ≤ ε11/ε = ε21/ε ≤ 1
and ε12/ε = 1) which can be viewed as the anisotropic coun-
terpart of the isotropic subclass I. Analogously, we employ
the letter (B) next to A to refer to the anisotropic counter-
part (ε11/ε = ε12/ε = 1 and 0 ≤ ε21/ε ≤ 1) of the isotropic
models J. Finally, the number 0 is used to emphasize that the

TABLE I. Definition of the models.

Model ε11 ε12 ε21 ε22

HS 0 0 0 0
A0 0 ε 0 0
I0 ε 0 0 ε

J0 0 ε ε 0
B0 ε ε 0 ε

SW ε ε ε ε
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corresponding models are the extreme cases of the subclasses
I, J, A, and B, respectively.

Model A0 is the one more directly related to the original
Kern–Frenkel potential and was the one analyzed in Ref. 12.
Also related to that potential is model B0, where only the in-
teraction between the two hydrophilic patches is purely repul-
sive. On the other hand, in models I0 and J0 (where ε12 = ε21)
the interaction becomes isotropic and the Janus character of
the model is blurred. In model I0 the fluid reduces to a binary
mixture with attractive interactions between like components
and HS repulsions between unlike ones. This model was pre-
viously studied by Zaccarelli et al.13 using integral equation
techniques. In the complementary model J0 attraction exists
only between unlike particles. The points A0, B0, I0, and J0
can be reached from the one-component SW fluid along mod-
els represented by the lines A, B, I, and J, respectively. Of
course, other intermediate models are possible inside the tri-
angle SW-I0-B0-SW or inside the square SW-B0-A0-J0-SW.

In addition to the energy parameters εij, the number den-
sity ρ, and the temperature T, each particular system is spec-
ified by the mixture composition (i.e., the mole fraction x1).
In fact, in Ref. 12 the thermodynamic and structural prop-
erties of model A0 were studied both under equimolar and
non-equimolar conditions.

III. GIBBS ENSEMBLE MONTE CARLO SIMULATIONS

In this paper, we use GEMC techniques14–16 to study
the gas-liquid condensation process of models SW, A0, B0,
I0, and J0 and the demixing transition of models I0 and B0.
We have chosen the width of the active attractive patch as
in the experiment of Hong et al.3 (�/σ = 0.05). Given the
very small width of the attractive wells, we expect the liq-
uid phase to be metastable with respect to the corresponding
solid one.17–19 Reduced densities ρ∗ = ρσ 3 and temperatures
T∗ = kBT/ε will be employed throughout.

A. Technical details

The GEMC method is widely adopted as a standard
method for calculating phase equilibria from molecular simu-
lations. According to this method, the simulation is performed
in two boxes (I and II) containing the coexisting phases. Equi-
libration in each phase is guaranteed by moving particles.
Equality of pressures is satisfied in a statistical sense by ex-
panding the volume of one of the boxes and contracting the
volume of the other one, keeping the total volume constant.
Chemical potentials are equalized by transferring particles
from one box to the other one.

In the GEMC run we have on each step a probability
ap/(ap + av + as), av/(ap + av + as), and as/(ap + av + as)
for a particle random displacement, a volume change, and
a particle swap move between both boxes, respectively. We
generally chose the relative weights ap = 1, av = 1/10, and
as = 20. To preserve the up-down fixed patch orientation,
rotation of particles was not allowed. The maximum parti-
cle displacement was kept equal to 10−3L(γ ) where L(γ ) is
the side of the (cubic) box γ = I, II. Regarding the volume
changes, following Ref. 20 we performed a random walk in
ln(V (I)/V (II)), with V (γ ) the volume of the box γ , choosing

a maximum volume displacement of 1%. The volume move
is computationally the most expensive one. This is because,
after each volume move, it is necessary, in order to determine
the next acceptance probability, to perform a full potential en-
ergy calculation since all the particle coordinates are rescaled
by the factor associated with the enlargement or reduction of
the boxes. However, this is not necessary for the other two
moves since in those cases only the coordinates of a single
particle change.

Both in the condensation and in the demixing problems,
the Monte Carlo swap move consisted in moving a particle
selected randomly in one box into the other box, so that the
number of particles of each species in both boxes (N (I)

1 , N
(I)
2 ,

N
(II)
1 , and N

(II)
2 ) were fluctuating quantities. The only con-

straint was that the total number of particles was the same
for both species, i.e., N1 ≡ N

(I)
1 + N

(II)
1 = N

(I)
2 + N

(II)
2 ≡ N2

= N/2. In the condensation problem we fixed the global den-
sity ρ = N/(V (I) + V (II)) (in all the cases we took ρ∗ = 0.3,
a value slightly below the expected critical density) and then
varied the temperature T (below the critical temperature). The
measured output quantities where the partial densities ρ(I)

= N (I)/V (I) and ρ(II) = N (II)/V (II), where N (γ ) = N
(γ )
1

+ N
(γ )
2 is the total number of particles in box γ = I, II.

Note that (ρ(II) − ρ)/(ρ − ρ(I)) = V (I)/V (II). In contrast, in
the demixing problem we fixed T (above the critical tempera-
ture) and varied ρ, the output observables being the local mole
fractions x

(I)
1 = N

(I)
1 /N (I) and x

(II)
1 = N

(II)
1 /N (II). In this case,

the lever rule is (x(II)
1 − 1

2 )/( 1
2 − x

(I)
1 ) = N (I)/N (II).

The total number of particles of each species was
N1 = N2 = 250, what was checked to be sufficient for our
purposes. We used (50–100)×106 MC steps for the equilibra-
tion (longer near the critical point) and (100–200) ×106 MC
steps for the production.21

B. Gas-liquid coexistence

Results for the gas-liquid transition are depicted in
Fig. 3 in the temperature-density plane. Some representative

ρ

FIG. 3. Gas-liquid binodals for models SW, B0, I0, J0, and A0. The points
indicated as SHS in the legend are grand canonical MC (GCMC) results taken
from Ref. 22, where the actual one-component SHS model was studied. The
remaining results are those obtained in this work from GEMC simulations.
In each case, the solid line is a guide to the eye, while the dashed line is
the result of the extrapolation to the critical point, which is represented by a
square.
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TABLE II. Gas-liquid coexistence properties for models A0, B0, I0, and J0, as obtained from our GEMC simulations. T∗ is the reduced temperature, ρ∗
γ is the

reduced density of the gas (γ = g) and liquid (γ = l) phases, N(g) is the average number of particles in the gas box, and U
(γ )
ex /N (γ ) is the excess internal energy

per particle in box γ .

Model T∗ ρ∗
g ρ∗

l N(g)/N −U
(g)
ex /εN (g) −U

(l)
ex /εN (l)

A0 0.075 0.1994(6) 0.590(1) 0.493(2) 1.69(1) 1.796(7)
0.1 0.214(2) 0.559(5) 0.535(4) 1.785(4) 1.780(8)
0.125 0.223(1) 0.530(6) 0.556(3) 1.63(9) 1.71(5)
0.15 0.231(1) 0.503(4) 0.574(4) 1.60(1) 1.78(1)
0.175 0.250(2) 0.455(8) 0.630(6) 1.42(1) 1.632(9)

B0 0.3 0.112(2) 0.887(5) 0.284(5) 1.6(1) 3.27(1)
0.325 0.128(1) 0.839(3) 0.324(3) 0.761(1) 3.239(7)
0.328 0.145(5) 0.771(5) 0.363(9) 0.88(2) 2.99(1)
0.33 0.15(1) 0.73(1) 0.380(1) 0.95(1) 3.016(9)
0.335 0.18(3) 0.65(3) 0.45(1) 1.0(7) 2.83(2)
0.337 0.23(5) 0.54(5) 0.59(1) 1.273(4) 2.36(4)

I0 0.3 0.202(3) 0.61(1) 0.5146(7) 2.48(6) 3.04(1)
0.325 0.211(5) 0.58(2) 0.5371(6) 1.76(4) 2.765(8)
0.35 0.24(1) 0.50(3) 0.612(3) 1.24(3) 2.30(1)
0.36 0.25(2) 0.45(4) 0.657(5) 1.01(1) 1.85(5)
0.365 0.28(3) 0.42(5) 0.71(1) 0.96(2) 1.6(1)

J0 0.2 0.10(1) 0.93(3) 0.249(5) 1.67(2) 2.48(3)
0.25 0.14(1) 0.83(5) 0.34(1) 0.82(2) 2.25(3)
0.255 0.17(2) 0.70(5) 0.433(9) 0.90(2) 1.99(2)
0.257 0.19(3) 0.60(6) 0.62(6) 1.10(7) 1.5(2)

numerical values for models A0, B0, I0, and J0 are tabu-
lated in Table II. In this case, one of the two simulation boxes
(I = g) contains the gas phase and the other one (II = l) con-
tains the liquid phase. Since ρg < ρ < ρ l, the choice of the
global density ρ establishes a natural bound as to how close to
the critical point the measured binodal curve can be. In fact,
N(g) → 0 if ρ l → ρ, while N(g) → N if ρg → ρ. As is apparent
from the values of N(g)/N in Table II, the latter scenario seems
to take place in our case ρ∗ = 0.3.

Although not strictly enforced, we observed that N
(g)
1

	 N
(g)
2 and N

(l)
1 	 N

(l)
2 (so both boxes were practically

equimolar) in models A0, B0, and J0. On the other hand,
in the case of model I0 the final equilibrium state was non-
equimolar (despite the fact that, as said before, N1 = N2 glob-
ally), the low-density box having a more disparate composi-
tion than the high-density box. The mole fraction values are
shown in Table III. Thus, in contrast to models A0, B0, and
J0, the GEMC simulations at fixed temperature and global
density ρ∗ = 0.3 spontaneously drove the system I0 into two

TABLE III. Mole fractions in the gas and liquid boxes in model I0 at differ-
ent temperatures and with a global density ρ∗ = 0.3. For the gas and liquid
densities, see Table II. Because of the symmetry under label exchange 1 ↔ 2,
we have adopted the criterion x

(g)
1 ≤ x

(g)
2 without loss of generality.

T∗ x
(g)
1 x

(l)
1

0.3 0.03(1) 0.992(6)
0.325 0.09(2) 0.98(1)
0.35 0.18(3) 0.955(15)
0.36 0.26(3) 0.93(3)
0.365 0.34(3) 0.89(4)

coexisting boxes differing both in density and composition.
This spontaneous demixing phenomenon means that in model
I0 the equimolar binodal curve must be metastable with re-
spect to demixing and so it was not observed in our simula-
tions. It is important to remark that, while the equimolar bin-
odal must be robust with respect to changes in the global den-
sity ρ (except for the bound ρg < ρ < ρ l mentioned above),
the non-equimolar binodal depends on the value of ρ.

In addition to cases SW, B0, I0, J0, and A0, we have also
included in Fig. 3, for completeness, numerical results ob-
tained by Miller and Frenkel22 on the one-component Bax-
ter’s sticky-hard-sphere (SHS) model.23 As expected, they
agree quite well with our short-range SW results, the only
qualitative difference being a liquid branch at slightly larger
densities.

In order to determine the critical point (T ∗
c , ρ∗

c ) we
empirically extrapolated the GEMC binodals using the law
of rectilinear “diameters,”24 1

2 (ρ∗
g + ρ∗

l ) = ρ∗
c + A|T ∗ − T ∗

c |,
and the Wegner expansion24, 25 for the width of the coexis-
tence curve, ρ∗

l − ρ∗
g = B|T ∗ − T ∗

c |βI . The critical coordi-
nates (T ∗

c , ρ∗
c ) and the coefficients A and B are taken as fitting

parameters. The four points corresponding to the two high-
est temperatures were used for the extrapolation in each case.
We remark that our data do not extend sufficiently close to the
critical region to allow for quantitative estimates of critical ex-
ponents and non-universal quantities. However, assuming that
the models belong to the three-dimensional Ising universality
class, we chose βI = 0.325. The numerical values obtained
by this extrapolation procedure will be presented in Table V
below.

The decrease in the critical temperatures and densities in
going from the one-component SW fluid to model B0 and
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FIG. 4. Snapshot of the liquid-phase box in model A0 at T∗ = 0.15.

then to model A0 is strongly reminiscent of an analogous
trend present in the unconstrained one-patch Kern–Frenkel
model upon decrease of the coverage.26

It is interesting to remark that, even though the influence
of attraction in model A0 is strongly inhibited by the up-down
constrained orientation (εij = εδi1δj2), this model exhibits a
gas-liquid transition. This surprising result was preliminarily
supported by canonical NV T MC simulations in Ref. 12, but
now it is confirmed by the new and more appropriate GEMC
simulations presented in this paper. Given the patch geometry
and interactions in model A0, one might expect the formation
of a lamellar-like liquid phase (approximately) made of al-
ternating layers (up-down-up-down-· · ·) of particles with the
same orientation. This scenario is confirmed by snapshots of
the liquid-phase box, as illustrated by Fig. 4.

The Kern–Frenkel analogy is not applicable to the
isotropic models I0 and J0. Model J0 presents a critical point
intermediate between those of models B0 and A0, as ex-
pected. However, while the decrease in the total average at-
tractive strength is certainly one of the main mechanisms
dictating the location of the gas-liquid coexistence curves, it
cannot be the only discriminating factor, as shown by the re-
sults for the isotropic model I0, where the critical temperature
is higher and the binodal curve is narrower than that corre-
sponding to the anisotropic model B0. This may be due to the
fact that, as said before, the binodal curve in model I0 is not
equimolar and this lack of equimolarity is expected to extend
to the critical point, as can be guessed from the trends ob-
served in Table III. In other words, two demixed phases can
be made to coexist at a higher temperature and with a smaller
density difference than two mixed phases.

C. Demixing transition

The bi-component nature of the systems raises the ques-
tion of a possible demixing transition in which a rich-1 phase
coexists with a rich-2 phase at a given temperature T, provided
the density is larger than a certain critical consolute density
ρcc(T). The points ρcc(T) or, reciprocally, Tcc(ρ) define the
so-called λ-line.27 The interplay between the gas-liquid and
demixing transitions is a very interesting issue and was dis-
cussed in a general framework by Wilding et al.28

Since all the spheres have the same size, a necessary
condition for demixing in the case of isotropic potentials is
that the like attractions must be sufficiently stronger than the
unlike attractions.28, 29 Assuming the validity of this condi-
tion to anisotropic potentials and making a simple estimate
based on the virial expansion, one finds that demixing re-
quires the coefficient of x1x2 in the second virial coefficient
to be positive, i.e., 2eε11/kBT > eε12/kBT + eε21/kBT . While this
demixing criterion is only approximate, it suggests that, out
of the five models considered, only models B0 and I0 are ex-
pected to display demixing transitions. As a matter of fact,
we have already discussed the spontaneous demixing phe-
nomenon taking place in model I0 when a low-density phase
and a high-density phase are in mutual equilibrium. In this
section, however, we are interested in the segregation of the
system, at a given T and for ρ > ρcc(T), into a rich-2 phase
I with x

(I)
1 = xd (ρ) < 1

2 and a symmetric rich-1 phase II with

x
(II)
1 = 1 − xd (ρ) > 1

2 , both phases at the same density.
Our GEMC simulation results are presented in Fig. 5 and

Table IV. We observe that, as expected, x(I)
1 = 1 − x

(II)
1 within

statistical fluctuations. We have also checked that ρ(I) 	 ρ(II),
even though this equality is not artificially enforced in the
simulations. Such equality is also equivalent to ρ(I) 	 ρ and
we checked that it was satisfied within a standard deviation
of 0.02σ−3 in all cases considered in Table IV. To obtain the
critical consolute density ρ∗

cc for each temperature, we extrap-
olated the data again according to the Ising scaling relation
1
2 − xd (ρ) = C(ρ − ρcc)βI .

It is interesting to note that just the absence of attraction
when a particle of species 2 is below a particle of species 1
(ε21 = 0) in model B0 is sufficient to drive a demixing transi-
tion. However, as expected, at a common temperature (see T∗

= 0.4 in Fig. 5), demixing requires higher densities in model
B0 than in model I0.

As said above, the interplay of condensation and demix-
ing is an interesting problem by itself.28, 30 Three alternative
scenarios are in principle possible for the intersection of the λ-
line and the binodal curve: a critical end point, a triple point,
or a tricritical point.28 Elucidation of these scenarios would
require grand canonical simulations (rather than GEMC sim-
ulations), what is beyond the scope of this paper.

IV. SIMPLE ANALYTICAL THEORIES

Let us now compare the above numerical results with
simple theoretical predictions. The solution of integral equa-
tion theories for anisotropic interactions and/or multicompo-
nent systems requires formidable numerical efforts, with the
absence of explicit expressions often hampering physical in-
sight. Here we want to deal with simple, purely analytical the-
ories that yet include the basic ingredients of the models.

First, we take advantage of the short-range of the at-
tractive well (�/σ = 0.05) to map the different SW interac-
tions into SHS interactions parameterized by the “stickiness”
parameters12

tij ≡ 1

12τij

≡ �

σ

(
1 + �

σ
+ �2

3σ 2

)
(eεij /kBT − 1), (3)
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FIG. 5. Demixing curves for models (a) I0 and (b) B0 at two temperatures,
as obtained from GEMC simulations, in the density-mole fraction plane. In
each case, the solid line is a guide to the eye, while the critical consolute point
is represented by a square. For model I0 we found ρ∗

cc(T ∗ = 0.4) = 0.336
and ρ∗

cc(T ∗ = 0.45) = 0.429; for model B0 the results are ρ∗
cc(T ∗ = 0.35)

= 0.650 and ρ∗
cc(T ∗ = 0.4) = 0.665. The dashed-dotted lines are the theo-

retical predictions (see Sec. IV C).

which combine the energy and length scales. This mapping
preserves the exact second virial coefficient of the genuine
SW systems, namely,

B2

BHS
2

= 1 − 3t11 + 3x1x2(2t11 − t12 − t21), (4)

where BHS
2 = 2πσ 3/3 is the HS coefficient. The exact expres-

sion of the third virial coefficient B3 in the SHS limit for arbi-
trary tij is12

B3

BHS
3

= 1 − 6t11 + 72

5
t2
11 − 48

5
t3
11 − 6

5
x1x2

[
(12t11 − 5)

× (2t11 − t12 − t21) − 8t11
(
t2
11 − t12t21

)
− 2(4t11 − 3)

(
2t2

11 − t2
12 − t2

21

) + 2α(t12 − t21)2
]
,

(5)

TABLE IV. Demixing coexistence properties for models I0 and B0, as ob-
tained from our GEMC simulations. T∗ is the reduced temperature, ρ∗ is the
reduced density, and x

(γ )
1 is the mole fraction of species 1 in each one of the

two coexisting phases γ = I, II.

Model T∗ ρ∗ x
(I)
1 x

(II)
1

I0 0.4 0.7 0.005(5) 0.992(5)
0.65 0.006(6) 0.985(6)
0.6 0.01(1) 0.97(1)
0.5 0.05(3) 0.93(3)
0.4 0.19(4) 0.81(4)
0.38 0.23(6) 0.77(6)
0.36 0.32(9) 0.68(9)
0.34 0.4(1) 0.6(1)

0.45 0.7 0.01(1) 0.99(1)
0.6 0.05(2) 0.96(2)
0.5 0.14(4) 0.87(4)
0.45 0.25(7) 0.74(7)
0.43 0.4(1) 0.6(1)

B0 0.35 0.725 0.09(2) 0.91(2)
0.7 0.11(2) 0.90(2)
0.675 0.15(3) 0.87(3)
0.66 0.18(4) 0.80(4)
0.65 0.40(6) 0.60(6)

0.4 0.725 0.20(3) 0.82(3)
0.7 0.22(4) 0.78(4)
0.675 0.31(5) 0.69(5)
0.665 0.45(6) 0.55(6)

where BHS
3 = 5π2σ 6/18 and

α ≡ 3
√

3

π
− 1. (6)

A. Equations of state

One advantage of the SW → SHS mapping is that the
Percus–Yevick (PY) integral equation is exactly solvable for
SHS mixtures with isotropic interactions (t12 = t21).31, 32 In
principle, that solution can be applied to the models SW, I0,
and J0 represented in Fig. 2. On the other hand, if t11 �= 0
(models SW and I0), the PY solutions are related to algebraic
equations of second (SW) or fourth (I0) degrees, what cre-
ates the problem of disappearance of the physical solution for
large enough densities or stickiness. In particular, we have ob-
served that the breakdown of the solution preempts the exis-
tence of a critical point in model I0. However, in the case of
model J0 (t11 = 0, t12 = t21 = t), the PY solution reduces to a
linear equation whose solution is straightforward. Following
the virial (v) and the energy (u) routes, the respective expres-
sions for the compressibility factor Z ≡ P/ρkBT (where P is
the pressure) have the form

Zv(η, t, x1) = ZHS
v (η) − x1x2Z

(1)
v (η, t) − x2

1x
2
2Z(2)

v (η, t),
(7)

Zu(η, t, x1) = ZHS
u (η) − x1x2Z

(1)
u (η, t), (8)



174902-7 Fantoni et al. J. Chem. Phys. 139, 174902 (2013)

where η = πρ∗/6 is the packing fraction,

ZHS
v (η) = 1 + 2η + 3η2

(1 − η)2
(9)

is the HS compressibility factor derived from the PY equa-
tion via the virial route, ZHS

u is an indeterminate integration
constant, and the explicit expressions for Z(1)

v , Z(2)
v , and Z(1)

u

are

Z(1)
v (η, t) = 24ηt

(1 − η + 6ηt)2

[
1 + 2η

1 − η
+ 3ηt

2 + 2η − 5η2/2

(1 − η)2

+ 6η2t2 2 − 4η − 7η2

(1 − η)3

]
, (10)

Z(2)
v (η, t) = 288η3t2(2 + η)

(1 − η + 6ηt)3

[
1

1 − η
− t

2 − 11η

(1 − η)2

+ t2 2 − 10η + 61η2/2

(1 − η)3

]
, (11)

Z(1)
u (η, t) = 6η

(1 − η)2

[
2t(2 + η)

1 − η + 6ηt
+ ln

1 − η + 6ηt

1 − η

]
.

(12)

To the best of our knowledge, this extremely simple solution
of the PY integral equation for a model of SHS mixtures had
not been unveiled before.

As apparent from Fig. 2, model A0 is a close relative of
model J0. However, the fact that ε12 �= ε21 = 0 (or t12 �= t21

= 0) makes the interaction anisotropic and prevents the PY
equation from being exactly solvable in this case. On the other
hand, we have recently proposed12 a simple rational-function
approximation (RFA) that applies to models with t12 �= t21 and
reduces to the PY solution in the case of isotropic models (t12

= t21). The RFA solution for model A0 yields once more a
linear equation. The virial and energy equations of state are
again of the forms (7) and (8), respectively, with expressions
for Z(1)

v , Z(2)
v , and Z(1)

u given by

Z(1)
v (η, t)= 12ηt

1 − η + 6ηt

[
1 + 2η

(1 − η)2
+ 2ηt

1 − 2η − 7η2/2

(1 − η)3

]
,

(13)

Z(2)
v (η, t) = 72η3t2(2 + η)

(1 − η)3(1 − η + 6ηt)
, (14)

Z(1)
u (η, t) = 3η

(1 − η)2

[
2t(2 + η)

1 − η + 6ηt
+ ln

1 − η + 6ηt

1 − η

]
.

(15)

In the RFA solution for model A0 the exact third virial coef-
ficient (5) is recovered by the interpolation formula

Z = ZHS
CS + α

(
Zv − ZHS

v

) + (1 − α)
(
Zu − ZHS

u

)
= ZHS

CS − x1x2
[
αZ(1)

v + (1 − α)Z(1)
u

] − x2
1x2

2αZ(2)
v ,

(16)

where

ZHS
CS (η) = 1 + η + η2 − η3

(1 − η)3
(17)

is the HS Carnahan–Starling compressibility factor and the
interpolation weight α is given by Eq. (6). By consis-
tency, Eq. (16) will also be employed in the PY solution of
model J0.

In the cases of models with ε11 �= 0 (i.e., SW, B0, and
I0), the PY and RFA theories fail to have physical solutions
in regions of the temperature-density plane overlapping with
the gas-liquid transition. In order to circumvent this problem,
we adopt here a simple perturbative approach:

Z = Zref + (
B2 − Bref

2

)
ρ + (

B3 − Bref
3

)
ρ2, (18)

where Zref is the compressibility factor of a reference model
and Bref

2 and Bref
3 are the associated virial coefficients. As a

natural choice (see Fig. 2), we take the models J0, A0, and
HS (which lie on the plane ε11/ε = 0) as reference systems
for the models SW, B0, and I0 (which lie on the plane ε11/ε
= 1), respectively. More specifically,

ZSW = ZJ0 + (
BSW

2 − BJ0
2

)
ρ + (

BSW
3 − BJ0

3

)
ρ2, (19)

ZB0 = ZA0 + (
BB0

2 − BA0
2

)
ρ + (

BB0
3 − BA0

3

)
ρ2, (20)

ZI0 = ZHS
CS + (

BI0
2 − BHS

2

)
ρ + (

BI0
3 − BHS

3

)
ρ2. (21)

Here, ZJ0 and ZA0 are given by Eq. (16) (with the correspond-
ing expressions of Z(1)

v , Z(2)
v , and Z(1)

u ) and the virial coeffi-
cients are obtained in each case from Eqs. (4) and (5) with the
appropriate values of t11, t12, and t21.

From the explicit knowledge of Z(η, t, x1), standard ther-
modynamic relations allow one to obtain the free energy per
particle a(η, t, x1) and the chemical potentials μi(η, t, x1) as

βa(η, t, x1) =
∫ η

0
dη′ Z(η′, t, x1) − 1

η′ + x1 ln(x1η)

+ (1 − x1) ln[(1 − x1)η] + const, (22)

βμ1(η, t, x1) = βa(η, t, x1) + Z(η, t, x1)

+ (1 − x1)
∂βa(η, t, x1)

∂x1
, (23)

μ2(η, t, x1) = μ1(η, t, 1 − x1), (24)

where β ≡ 1/kBT.

B. Gas-liquid coexistence

The critical point (ηc, tc) of the gas-liquid transition
is obtained from the well-known condition that the critical
isotherm in the pressure-density plane presents an inflection
point with horizontal slope at the critical density.33 In terms
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TABLE V. Comparison between the critical points measured in simulations
with those obtained from theoretical approaches.

Method SW B0 I0 J0 A0

T ∗
c

Simulation 0.369a 0.338b 0.368b 0.258b 0.193b

Our theory 0.377 0.341 0.331 0.278 0.214
Noro–Frenkel 0.369 0.335 0.297 0.297 0.247

ρ∗
c

Simulation 0.508a 0.373b 0.344b 0.344b 0.342b

Our theory 0.356 0.330 0.366 0.376 0.359

aGCMC results for the one-component SHS fluid From Ref. 22.
bOur GEMC simulation results.

of the compressibility factor Z, this implies

∂
[
ηZ(η, tc, 1/2)

]
∂η

∣∣∣∣∣
η=ηc

= ∂2
[
ηZ(η, tc, 1/2)

]
∂η2

∣∣∣∣∣
η=ηc

= 0,

(25)
where equimolarity (x1 = 1

2 ) has been assumed. For tem-
peratures below the critical temperature (i.e., t > tc) the
packing fractions ηg and ηl of the gas and liquid coexist-
ing phases are obtained from the conditions of equal pres-
sure (mechanical equilibrium) and equal chemical potential
(chemical equilibrium),33 i.e.,

ηgZ(ηg, t, 1/2) = ηlZ(ηl, t, 1/2), (26)

μ1(ηg, t, 1/2) = μ1(ηl, t, 1/2). (27)

In order to make contact with the GEMC results, the the-
oretical values of tc have been mapped onto those of T ∗

c by
inverting Eq. (3), namely,

1

T ∗ = ln

[
1 + t

(�/σ )
(
1 + �/σ + �2/3σ 2

)
]

(28)

with �/σ = 0.05.
Table V compares the critical points obtained in simula-

tions for the one-component SW fluid (in the SHS limit) and
for models B0, I0, J0, and A0 (see Fig. 2) with those stem-
ming from our simple theoretical method. Results from the
Noro–Frenkel (NF) corresponding-state criterion,34 accord-
ing to which B2/B

HS
2 = −1.21 at the critical temperature, are

also included. We observe that, despite its simplicity and the
lack of fitting parameters, our fully analytical theory predicts
quite well the location of the critical point, especially in the
case of T ∗

c . It improves the estimates obtained from the NF
criterion, except in the SW case, where, by construction, the
NF rule gives the correct value. In what concerns the gas-
liquid binodals, Fig. 6 shows that the theoretical curves agree
fairly well with the GEMC data, except in the cases of models
I0 and A0, where the theoretical curves are much flatter than
the simulation ones. The lack of agreement with the binodal
curve of model I0 can be partially due to the fact that in the
theoretical treatment the two coexisting phases are supposed
to be equimolar, while this is not the case in the actual simu-
lations (see Table III).

FIG. 6. Gas-liquid binodals for models SW, A0, B0, I0, and J0, as obtained
from our theoretical method (solid lines). The critical points are represented
by open squares. The symbols joined by dashed lines correspond to our
GEMC data (see Fig. 3).

C. Demixing transition

In the case of the demixing transition, the critical conso-
lute density ηcc at a given temperature is obtained from

∂2a(ηcc, t, x1)

∂x2
1

∣∣∣∣
x1= 1

2

= 0. (29)

For η > ηcc, the demixing mole fraction x1 = xd(η) is the
solution to

μ1(η, t, xd ) = μ1(η, t, 1 − xd ). (30)

In terms of the compressibility factor Z, Eqs. (29) and (30)
can be rewritten as∫ ηcc

0
dη

∂2Z(η, t, x1)/∂x2
1

∣∣
x1= 1

2

η
= −4, (31)

∫ η

0
dη′ ∂Z(η′, t, xd )/∂xd

η′ = ln
1 − xd

xd

, (32)

respectively.
The perturbative approximations for models I0 and B0

succeed in predicting demixing transitions, even though their
respective reference systems (HS and A0) do not demix.
In the case of model I0, the critical consolute densities are
ρ∗

cc(T ∗ = 0.4) = 0.306 and ρ∗
cc(T ∗ = 0.45) = 0.390, which

are about 9% lower than the values obtained in our GEMC
simulations. In the case of model B0, our simple theory pre-
dicts a critical consolute point only if t > 0.7667, i.e., if T∗

< 0.364, so no demixing is predicted at T∗ = 0.4, in contrast
to the results of the simulations. At T∗ = 0.35 the theoreti-
cal prediction is ρ∗

cc = 0.406, a value about 39% smaller than
the GEMC one. The theoretical demixing curves at T∗ = 0.4
and T∗ = 0.45 for model I0 and at T∗ = 0.35 for model B0
are compared with the GEMC results in Fig. 5. We can ob-
serve a fairly good agreement in the case of model I0, but not
for model B0. In the latter case, the theoretical curve spans a
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density range comparable to that of model I0, while simula-
tions show a much flatter demixing curve.

V. CONCLUDING REMARKS

In conclusion, we have proposed a novel class of binary-
mixture Janus fluids with up-down constrained orientations.
The class encompasses, as particular cases, the conventional
one-component SW fluid, mixtures with isotropic attractive
interactions only between like particles (model I0) or unlike
particles (model J0), and genuine Janus fluids with anisotropic
interactions and different patch-patch affinities (models A0
and B0). Both GEMC numerical simulations and simple the-
oretical approximations have been employed to analyze the
gas-liquid transition under global equimolar conditions for
the five models and the demixing transition for the two mod-
els (I0 and B0) where the attraction between like particles
is stronger than between unlike ones. The theoretical anal-
ysis employed a mapping onto SHS interactions that were
then studied by means of the PY theory (model J0), the RFA
(model A0), and low-density virial corrections (models SW,
I0, and B0), with semi-quantitative agreement with numerical
simulations.

Interestingly, the presence of attraction in only one out of
the four possible patch-patch interactions (model A0) turns
out to be enough to make the gas-liquid transition possi-
ble. Reciprocally, the lack of attraction in only one of the
two possible patch-patch interactions between unlike parti-
cles (model B0) is enough to produce a demixing transi-
tion. Except in model I0, the coexisting gas and liquid phases
have an equimolar composition. As the average attraction
is gradually decreased, the gas-liquid critical point shifts to
lower temperatures (except for an interesting inversion of ten-
dency observed when going from the isotropic model I0 to
the anisotropic model B0) and lower densities. Moreover,
the coexistence region progressively shrinks, in analogy with
what is observed in the unconstrained one-component Janus
fluid35, 36 and in the empty liquid scenario.37 On the other
hand, the imposed constraint in the orientation of the attrac-
tive patches does not allow for the formation of those inert
clusters38–40 which in the original Janus fluid are responsible
for a re-entrant gas branch.26, 38, 41
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