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We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches,
distributed so as not to overlap. Two spheres interact via a “sticky” Baxter potential if the line
joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere
potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line
as a function of the size of the patch �the fractional coverage of the sphere’s surface� and of the
number of patches within a virial expansion up to third order and within the first two terms �C0 and
C1� of a class of closures Cn hinging on a density expansion of the direct correlation function. We
find that the locations of the two lines depend sensitively on both the total adhesive coverage and
its distribution. The treatment is almost fully analytical within the chosen approximate theory. We
test our findings by means of specialized Monte Carlo simulations and find the main qualitative
features of the critical behavior to be well captured in spite of the low density perturbative nature
of the closure. The introduction of anisotropic attractions into a model suspension of spherical
particles is a first step toward a more realistic description of globular proteins in solution. © 2007
American Institute of Physics. �DOI: 10.1063/1.2805066�

I. INTRODUCTION

The idea of modeling fluids as systems of spherical par-
ticles with orientationally dependent attraction dates back at
least as far as Boltzmann, who envisaged chemical attraction
between atoms only when “their sensitive regions are in
contact.”1 Models of this type, featuring patchy interactions,
are currently experiencing renewed relevance in the context
of colloidal and biological matter in contrast to their original
conception in connection with fluids of atoms and small
molecules.2–17

The new interest arises for various reasons. On the tech-
nological side, patchy particles give the possibility of design-
ing self-assembling nanoscale devices through anisotropic
decorations of the particle surface by means of organic or
biological molecules.13–15 Nature provides inspiration for
what might be achieved in this area, a particularly elegant
example being the self-assembly of virus capsids. These pro-
tein shells are monodisperse and highly symmetric and are
composed of identical subunits. Simplified descriptions of
icosahedral virus capsids are currently being formulated us-
ing spherical subunits with directional interactions18,19 and
the possibility of adopting similar schemes to self-assemble
other target structures is being explored.13 This level of or-
ganization inevitably requires a certain specificity in the in-

teractions between the subunits as well as measures to pre-
vent further aggregation of the assembled objects.

Less specific patchy interactions give rise to associating
fluids containing a distribution of cluster sizes or extended
gel-like networks. The key feature of such systems is a set of
pointlike sites on the particle surface, leading to strongly
directional bonding with a maximum of one bond per
site.3,8,10,11,16,17 This type of interaction has proven invalu-
able in elucidating the interplay between fluid-fluid and sol-
gel transitions. One advantage of these models is that pow-
erful analytical tools are available for them, such as
Wertheim’s thermodynamic perturbation theory,20 which
yields accurate results under experimentally realistic
conditions.21,22

In contrast to these models with attractive spots, one can
envisage particles that interact through larger attractive re-
gions on their surface, for example, globular proteins with
patches of hydrophobic �nonpolar� amino acids exposed at
the surface. Isotropic potentials have been remarkably suc-
cessful in modeling the phase diagrams of certain
proteins,23–25 but it seems that not all features of their coex-
istence curves can be properly explained by such simple
interactions.26 In this sort of system, it seems more appropri-
ate to consider regions with short-range attractive
forces2,4–7,9,12 rather than site-site bonds. These attractive
patches are capable of sustaining as many “bonds” as per-
mitted by geometry. The size of the patch therefore becomes
an important new parameter that does not arise in most work
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on associating fluids. We note, however, that for sufficiently
narrow patches, the two models become essentially equiva-
lent.

In the present work, we focus on a simple yet physical
model which is a variation of those treated in Ref. 12. We
consider uniform circular patches distributed on the surface
of the sphere in such a way that they do not overlap. The
patches are delimited by circles which can be defined by the
associated solid angles. Two particles experience an adhesive
attraction only when a patch on one sphere touches a patch
on the other. The adhesion is of Baxter’s type,27 i.e., the
attraction has infinitesimal range, acting only when the par-
ticles are exactly in contact, as described in the next section.
This model has the advantage that it can be tackled with
analytical tools, unlike most other models for which not even
the isotropic analog bears this appealing feature. Various is-
sues arise in this sort of model relating to the stability of the
liquid phase with respect to crystalline solid phases, and
these points have been studied in Refs. 28 and 29.

The integral equation theory of fluids with an angularly
dependent pair potential is complicated by the fact that the
pair distribution function is also angularly dependent.30 In
the general case one must appeal to the symmetries of the
fluid �translational invariance, rotational invariance, invari-
ance under permutation of like particles, and invariance un-
der the symmetry operations of the individual particles and
of the correlation functions� in order to simplify the
problem.31–33 In some cases, it is possible to factorize the
angular dependence of the Ornstein–Zernike �OZ� equation.
For example, the factorization for a fluid of dipolar particles
has long been known34 and in Ref. 35 it is shown how to
solve the dipole-dipole angular distribution of attraction in
the adhesive limit within the Percus–Yevick framework.
However, the dipolar case hinges on exploiting a special
property of this particular angular distribution that is particu-
larly useful for the angular convolution in the OZ equation.
In contrast, for an angular dependence with discontinuities,
such as the circular patches treated here, any approach rely-
ing on a spherical harmonic expansion would prove a formi-
dable task due to the large number of terms necessary to
capture the discontinuities.

In the present model we therefore follow a different
route based on two parallel and related schemes. We first
perform a virial expansion up to the third virial coefficient.
We then proceed to study a class of closures �denoted C0,
C1, . . .� which were proposed in Ref. 36 and are based on a
density expansion of the direct correlation function. In par-
ticular, the zeroth-order term �C0� turns out to be equivalent
to a modified mean spherical approximation, whereas the
first-order �C1� is known to provide the correct third virial
coefficient.36 Within both schemes we study the thermody-
namics, radial distribution function and percolation thresh-
old, and compare with specialized Monte Carlo simulations
which were recently devised to this aim.37 By varying the
size of the adhesive patches and by selecting between one
patch and two diametrically opposite patches, we are able to
investigate the roles of both the total surface coverage and
the geometrical distribution of the adhesion. In both the one-
and two-patch cases we can change smoothly between small

sticky spots, capable of making only one bond each, and the
isotropic adhesive sphere. We find that the position of the
critical fluid-fluid transition line and the percolation thresh-
old are both sensitive to the surface coverage. At fixed cov-
erage, there is also a dependence on the way in which this
adhesion is distributed.

Our results can be compared and contrasted with the
recent work of Bianchi et al.,17 who consider the maximum
number of bonds per particle, rather than the fractional sur-
face coverage, as the key parameter controlling the location
of the critical point. In the present work we are able to tune
both effects, thus illuminating their specific roles in the lo-
cation of critical points.

The remainder of the paper is organized as follows. In
Sec. II we introduce the model while Sec. III contains a
description of the analytical and numerical tools used. Re-
sults for the radial distribution function, fluid-fluid transition,
and percolation threshold are included in Secs. IV–VI, re-
spectively. Finally, in Sec. VII the inclusion of an adhesive
background is discussed, and conclusions and an outlook are
contained in Sec. VIII.

II. DEFINITION OF THE MODEL

A. Baxter model with orientationally dependent
adhesion

We start with some general remarks on the orientational
dependence of a three-dimensional homogeneous fluid of
hard spheres with adhesive pairwise interactions. Let ri be
the coordinates of the ith particle �i=1,2 ,3 , . . .� and assume
that the patch distribution on the sphere has cylindrical
symmetry so that its orientation in space is determined by
a unit vector ŝi rigidly attached to it. Then ŝi

= �sin �i cos �i , sin �i sin �i , cos �i� where �i and �i are the
polar and the azimuthal angles with respect to a fixed refer-
ence frame �see Fig. 1�. As usual, we introduce the relative
coordinates r12=r2−r1 and the associated distance r12= �r12�,
and work with the following short-hand notation: �1,2�
= �r12,�1 ,�1 ,�2 ,�2� and �i= ��i ,�i� for the orientation of ŝi.
The orientation of r̂ij =rij /rij with respect to the same frame
of reference will be denoted by �ij = ��ij ,�ij�.

The particles interact through a pair potential ��1,2�,

FIG. 1. Summary of the vector notation used to define the model.
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defined later, which is a generalization of Baxter’s sticky
hard sphere �SHS� limit27 to orientationally dependent inter-
actions. We start with

���1,2� = �
+ � 0 � r � 	

− ln� 
�1,2�
12�

R

R − 	
� 	 � r � R

0 r 
 R ,
	 �1�

where �=1 / �kBT� �kB being Boltzmann’s constant and T be-
ing the temperature�, 	 is the diameter of the spheres, and

�1,2� /� is a dimensionless adhesion coefficient. We define
��1,2� through the following limit on the Boltzmann factor
e:

e�1,2� = exp�− ���1,2��

= lim
R→	

exp�− ���1,2��

= ��r12 − 	� +

�1,2�

�

	

12
��r12 − 	� , �2�

where ��·� is the Heaviside step function and ��·� is the
Dirac delta function. When 
�1,2�=1 we recover the usual
Baxter SHS model and, hence, the only orientational depen-
dence is included in the definition of 
�1,2�. It is easy to see
that 
�1,2� cannot be a simple function of ŝ1 and ŝ2 but must
also include a dependence on r̂12=r12 /r12 in order to avoid a
trivial corresponding states rescaling. This point is discussed
in Appendix A. In the present work we shall address a type
of orientational dependence which was introduced by Kern
and Frenkel12 following a previous suggestion by Jackson
et al.2

B. Patchy sticky hard spheres

Consider a single hard sphere having one or more iden-
tical adhesive circular patches distributed on its surface in
such a way that they do not overlap with one another. The
size of the patch can be specified by the angular amplitude
2� as shown in Fig. 2. The unit vector ŝi

�p� identifies the

direction from the center of particle i to the center of patch p
on the surface �p=1, . . . ,n, the total number of patches�. The
sticky area is then given by points r̂ on the surface of the
particle such that the angle between ŝi

�p� and r̂ is smaller than
�.

In conjunction with Eq. �2�, the adhesive part of the
interaction between two particles acts only if their point of
contact lies inside a patch on each particle, as depicted in
Fig. 3 for the case of a single patch �n=1�. Therefore,

�1,2�

�ŝ1 , ŝ2 , r̂12� can be written as


�1,2� = �1 if ŝ1
�p1� · r̂12 � cos � and − ŝ2

�p2� · r̂12 � cos � for some combination �p1,p2�
0 otherwise.

� �3�

Each patch occupies a portion of the sphere’s surface
covered by the solid angle 2��1−cos �� and a fundamental
role will be played in our discussion by the fraction of solid
angle �i.e., the coverage� associated with �, namely

�0��� =
1

2
�1 − cos �� = sin2
�

2
� . �4�

III. ANALYSIS OF THE MODEL

A. Analytical solution

We now tackle the analytical solution of this problem
based on two simple approximations: the virial expansion
and the Cn class of closures.

1. Virial expansion
As shown in Appendix B, the first two virial coefficients

for this model are

FIG. 2. Top panel: the adhesive patch model of Kern and Frenkel �Ref. 12�.
Bottom panel: patch surface coverage �0 as a function of the patch angle �.

234507-3 Patchy sticky hard spheres J. Chem. Phys. 127, 234507 �2007�

Downloaded 13 Mar 2008 to 79.11.234.9. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



b2 = B2/v0 = 4 − 12
�1

12�
, �5�

b3 = B3/v0
2 = 10 − 60

�1

12�
+ 144

�2

�12��2 − 96
�3

�12��3 , �6�

where v0=�	3 /6 is the volume of a sphere and

�2��,n� = 4�
�1,3�
�2,3��
�

3
− �13��

�1,�2,�3,�13

, �8�

�3��,n� = �
�1,2�
�1,3�
�2,3���1,�2,�3
��12=�/3,�23=2�/3,

�9�

where we have defined the angular average �with d�̃
=d� /4��,

�. . .�� =� d�̃ . . . . �10�

Here, �ij is the angle between r̂ij and r̂13 �which can be
chosen along the z axis�, and 
�i , j� is always associated with
a delta function that forces spheres i and j to be in contact.
Note that in Eq. �6� the effect of anisotropy is embedded in
the parameters �1 ,�2 ,�3 defined in Eqs. �7�–�9�, and that
these parameters are therefore functions of � and n. The iso-
tropic case is recovered when all �’s equal 1. We remark that
the expression for �2 involves an average over the relative
orientations �13 while there is an overlap between spheres 1
and 2, each of which is simultaneously in contact with sphere
3. Under such conditions there is always a maximum pos-
sible angle � /3 for �13 and this gives rise to the normaliza-
tion factor of 4 in Eq. �8�.

If one limits the expansion to the second virial coeffi-
cient, a law of corresponding states based on the rescaling

�→� /�1 between the patchy and the isotropic SHS models
holds true. This correspondence breaks down even at the
level of the third virial.

It is easy to see that �1=n2�0
2 as this is simply the prod-

uct of the separate coverages on each sphere. A calculation of
�2 and �3 is much more laborious and can be found in Ap-
pendix C for the case of a single patch. The final result in this
case is

�1 = �0
2, �11�

�2 = �0
2Q1��� , �12�

�3 = R1
3��� , �13�

where the coefficients Q1 and R1 are given in Appendix C.
For ��5� /6 it is possible to have three mutually bonded
spheres with the patch vectors pointing either inward or out-
ward �see Fig. 4�. Note that for the isotropic limit �=� all �i

�i=1,2 ,3� are equal to 1 as they should be. The three �i

coefficients are plotted in Fig. 5 as functions of �.
For spheres with two diametrically opposite patches,

each of width �, one finds

�1 = 4�0
2, �14�

FIG. 3. Adhesion requires simultaneous alignment of patches �dark shading�
on both spheres with the vector between their centers. The spheres in the
upper panel do not adhere, while those in the lower panel do.

FIG. 4. Configurations of three mutually bonded spheres, each possessing a
large single patch �dark shading�. The patch vectors point inward in the top
panel and outward in the bottom panel. The latter case is only possible for
�
5� /6. Combinations of these arrangements are also possible.
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�2 = 4�0
2Q2��� , �15�

�3 = R2
3��� , �16�

where the coefficients Q2 and R2 are given in Appendix D.
Note that in this case when �
� /3 it is also possible to have
sphere 1 in contact with spheres 2 and 3 through different
patches as shown in Fig. 6. The three �i coefficients are
plotted in Fig. 7 as functions of �.

The virial expansion of the excess free energy density is

�fexv0 = b2�2 + 1
2b3�3 + . . . , �17�

where �=�v0 is the hard sphere packing fraction. This al-
lows the calculation of the corresponding pressure and
chemical potential

�P��,��v0 = � + b2�2 + b3�3 + . . . ,

����,�� = ln��3/v0� + ln � + 2b2� + 3
2b3�2 + . . . ,

where � is the de Broglie wavelength.

2. Integral equations within the Cn closures

While the virial expansion only allows a limited low-
density region of the phase diagram to be probed, the integral
equation approach is much more powerful in this respect.
The trade-off is, of course, that since the OZ equation in-
volves the total correlation function h and direct correlation
function c, both of which are unknown, it can be solved only
after adding a closure, that is a second, approximate, rela-
tionship involving h, c, and the pair potential. In this section
we discuss a particular class of these closures �denoted Cn
hereafter� which have already been exploited in the isotropic
case and have proven to provide reasonably good predictions
even for intermediate densities.36

The OZ equation for a homogeneous fluid of molecules
interacting through anisotropic pair potentials is

h�1,2� = c�1,2� + �� d�3�c�1,3�h�3,2� , �18�

where d�i�
drid�̃i. More explicitly �see Eq. �10��,

h�1,2� = c�1,2� + �� dr3�c�1,3�h�3,2���3
. �19�

In a homogeneous fluid, translational invariance of any
correlation function implies that one can introduce reduced
coordinates r12=r2−r1 and r13=r3−r1,

h�r12,�1,�2� = c�r12,�1,�2�

+ �� dr3�c�r13,�1,�3�h�r32,�3,�2���3
.

�20�

FIG. 5. �Color online� Dependence of the coefficients �i �i=1,2 ,3� on � for
the one-patch model.

FIG. 6. Configurations of three mutually bonded spheres, each possessing
two patches �dark shading�. In the upper panel only one patch on each
sphere is involved in the bonds; in the lower panel both patches on each
sphere are involved. The latter case is only possible for ��� /3. Combina-
tions of these arrangements are also possible.

FIG. 7. �Color online� Dependence of the coefficients �i �i=1,2 ,3� on � for
the two-patch model.
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The presence of the convolution makes it convenient to
Fourier transform this equation with respect to the position
variable r. This yields for the corresponding functions �indi-
cated with a hat� in Fourier space k,

ĥ�k,�1,�2� = ĉ�k,�1,�2�

+ ��ĉ�k,�1,�3�ĥ�k,�3,�2���3
. �21�

The additional complication with respect to the isotropic
case is the presence of the orientational average of the prod-
uct appearing in Eq. �21�. In order to make progress, we use
a simple angular decoupling approximation

�ĉ�k,�1,�3�ĥ�k,�3,�2���3

� �ĉ�k,�1,�3���3
�ĥ�k,�3,�2���3

. �22�

As discussed in Ref. 36, Cn closures are based on a
density expansion of the cavity function y�1,2� which is re-
lated to the radial distribution function g�1,2� by g�1,2�
=y�1,2�e�1,2�.

In the presence of anisotropy, all correlation functions
clearly depend upon the solid angles �1 ,�2 ,�12. It is then
customary to consider30 the corresponding angular averaged
quantities g�r
r12�= �g�1,2���1,�2,�12

and similarly for y�r

r12�. Within Cn closures, for r
	, the radial distribution
function g�r� coincides with the cavity function y�r�. A den-
sity expansion of the cavity function yields

y�r� = 1 + �y1�r� + . . . , �23�

where

y1�r12� =� dr3�f�1,3�f�3,2���1,�2,�3,�12
. �24�

Calculation of Eq. �24� proceeds using arguments akin to
those presented in Appendix B, which are based on the de-
composition in Eq. �B2�. The integral in Eq. �24� then splits
into three integrals containing the various combinations of
the HS and the sticky parts of the Mayer function as in Eq.
�B2�.

B. Monte Carlo algorithms for Baxter-like potentials

Monte Carlo simulations of adhesive hard spheres re-
quire particular care even in the isotropic case because of the
singular nature of the potential. For completeness we sum-
marize the main ideas below, deferring to Ref. 37 for the
details.

Conventional Monte Carlo displacements of a SHS
would fail because the bonded states between particles oc-
cupy an infinitesimal volume of configuration space �and so
would never be located by random displacements� but have
infinite strength �and so would never be broken�. The solu-
tion is to compare the integrated weights of the various
bonded and unbonded states, which are finite. Specialized
algorithms that exploit this approach have been devised for
the canonical ensemble38,39 and were subsequently extended
to the grand canonical ensemble.40,41 The latter is particularly
convenient for identifying the critical point.42

The Monte Carlo algorithm for isotropic adhesive
spheres can be modified to deal with the patchy case by
incorporating the anisotropy in the acceptance criterion for
trial moves. Trial moves are attempted as described in detail
in Ref. 41 as though the spheres were uniformly adhesive.
Once the trial position of the displaced particle has been
chosen, a uniformly distributed random orientation is se-
lected. The move is then accepted only if an overlap of hard
cores is not generated �as in the isotropic case� and if all
contacts specified in the trial configuration have patches suit-
ably aligned to make the required bonds. This scheme pro-
duces the desired Boltzmann distribution37 and is applicable
to an arbitrary arrangement of patches. However, it becomes
inefficient when the total adhesive coverage of the sphere is
small because the random generation of orientations is then
unlikely to lead to patches being aligned with bonds, leading
to a high rejection rate.

IV. STRUCTURE

In the following we shall compare predictions from the
combined C1-orientational mean field approximation and
virial expansion with the results of Monte Carlo simulations.

One finds that y1�r� is different from zero only in the
region 0�r�2	 and

y1�r� =
�

12

 r

	
+ 4�
 r

	
− 2�2

+
�1

12�
2�
 r

	
− 2�

+
�� 2�r�
�12��22�

	

r
, �25�

where

�� 2�r� = �
�1,2�
�1,3���1,�2,�3
��12=2 arcsin�r/2	�� . �26�

In order to compute the angularly averaged radial distri-
bution function g�r� we have solved the full OZ Eq. �20�
within the C1 closure supplemented with the decoupling ap-
proximation �22�. The Wertheim–Baxter method27 and the
C1 closure combine such that only the cavity function at
contact depends upon the angular coefficients �1 ,�2 ,�3. The
solution for Baxter function is

q�r� = �a�r2 − 	2�/2 + b	�r − 	� + q		2���	 − r� r 
 0,

�27�

where

a =
1 + 2�

�1 − ��2 −
12q	�

1 − �
, �28�

b = −
3�

2�1 − ��2 +
6q	�

1 − �
, �29�

q	 =
ȳC1

12�
, �30�

ȳC1 = �yC1�r12 = 	,�1,�2,�12�
�1,2���1,�2,�12

= y0 + y1� . �31�

The coefficients y0,1=y0,1��� are related to the reduced virial
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coefficients b2,3 by Eq. �41�, later. Therefore, we can read off
their values

y0 = �1, �32�

y1 = 
30
�1

12�
− 144

�2

�12��2 + 144
�3

�12��3�� . �33�

In order to extract the numerical behavior of the radial
distribution function g�r� we have employed a discretization
method due to Perram43 to compute the numerical integral

rh�r� = − q��r� + 2���
0

�

du q�u��r − u�h��r − u�� . �34�

For the one-patch spheres the result is reported in Fig. 8
for various values of �, at �=0.4 and �=0.2. The choices
�=0 and �=� correspond to the limiting cases of pure HS
and isotropic SHS, respectively. Upon decreasing the size of
the patch, the behavior smoothly interpolates between these
two cases, as expected. The characteristic jump in g�r� at r
=2	 in the isotropic SHS model41 can be explicitly com-
puted within the C1 integral equation closure to be

g�2	+� − g�2	−� = − 6��ȳC1/�12���2. �35�

The jump is also present for intermediate values of � and
gradually fades out toward the HS result as illustrated in Fig.
8. In order to assess the precision of the predictions of the Cn
closures, in Fig. 9 we compare the radial distribution gener-
ated by both C0 and C1 closures with Monte Carlo simula-
tions �lower panel� and with the corresponding isotropic case
�upper panel�. The C1 closure is seen to follow the Monte
Carlo behavior well over the range of the ratio r /	 consid-
ered, in both the isotropic and anisotropic cases.

Like the Percus–Yevick solution of the isotropic model,
the C0 and C1 closures fail to capture certain � function and
step discontinuities in the radial distribution function,44 such
as those visible in the Monte Carlo results in the range 	
�r�2	 in Fig. 9. These features arise from clusters in
which the distance between two particles is fixed or limited
indirectly by a sequence of adhesive bonds, for example, the
outermost pair of particles in face-sharing tetrahedra. These
clusters are sampled correctly by the Monte Carlo
simulations.45

V. FLUID-FLUID COEXISTENCE CURVE

An interesting issue, both from the theoretical view point
and for the possible implications in predictions of experi-
mental phase transitions in solutions of globular proteins, is
the determination of the fluid-fluid coexistence curve for the
patchy sticky hard spheres, which we now address. We note
that the dense fluid �liquid� phase, though often long-lived, is
generally only metastable for systems of particles interacting
through sufficiently short-ranged isotropic attractive forces.
However, it has recently been predicted that a thermody-
namically stable liquid will be recovered if the coordination
number of the particles is restricted to a maximum of 6 or
less.29 Nevertheless, it seems that the specific details of the
interactions must be taken into account before a firm conclu-
sion can be drawn for a particular model.46

A. Virial expansion

In order to find the coexistence or binodal line we need
to solve for �1��� and �2��� the following set of equations:

P��,�1� = P��,�2� ,

���,�1� = ���,�2� .

A straightforward use of Eq. �17� for the excess free
energy density to this aim, however, yields meaningless re-
sults even at moderate densities as one could have expected

FIG. 8. �Color online� Radial distribution function for the one-patch model
�n=1� at �=0.4 and �=0.2 within the C1 approximation and for various
values of the adhesive coverage n�0.

FIG. 9. �Color online� Comparison between the radial distribution function
from MC simulations and from the C0 and C1 approximations in the iso-
tropic case �n�0=100%, top panel� and for an intermediate value of the
single patch �n=1� case with n�0=80% �bottom panel�. Both sets of calcu-
lations were performed at � / �n�0�2=0.125 and �	3=0.35 corresponding to
�=0.183. . ..
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from the outset. A way out of this problem was proposed in
Ref. 47 in the context of polydisperse SHS fluids. The idea
hinges on a modification of the Carnahan–Starling expres-
sion for the HS excess free energy density48

�fcs
exv0 =

4 − 3�

�1 − ��2�2, �36�

so that it matches the patchy SHS result up to the third order
in density. A possible choice is

�fexv0 = �c − 1�� ln�1 − �� + 3d
�2

1 − �
+ c

�2

�1 − ��2 , �37�

where c and d are parameters to be determined by expanding
to the third order in density and matching to Eq. �17�. We
then find

c =
b3 − 2b2 + 1

3
, �38�

d =
b2 − 1

3
. �39�

The pressure and the chemical potential are then

�Pv0 = � + �21 + 3d�1 − �� + ��� − 2 + c�3 − ���
�1 − ��3 ,

�� = ln��3/v0� + ln � + �c − 1�ln�1 − ��

+
�1 + c + 6d�� − �2 − 2c + 9d��2 + �1 − c + 3d��3

�1 − ��3 ,

respectively. In the limit c=d=1 Eq. �37� reduces to Eq. �36�
as expected.

The behavior of the binodal line as a function of � is
shown in Fig. 10. As � decreases, the coexistence region
shrinks as expected, since HS fluids ��=0� admit only a
single phase.49

B. C1 integral equation

An alternative route is to start from the excess free en-
ergy stemming from the energy route of the C1
approximation36

�fexv0 = �fcs
exv0 − �b2 − b2

HS��2 + �b3 − b3
HS�

�3

2
, �40�

where bn
HS=bn��→��. The rescaled virial coefficients bn

=bn��� can be related to the values of the corresponding
coefficients of the expansion for the cavity function at con-
tact ȳ=y0+y1�+y2�2+ . . . by means of the relation �see, e.g.,
Ref. 36, and references therein�

yn−2���/�2 =
1

n − 1

d�bn��� − bn
HS�

d�
, n � 2. �41�

Hence, we have

�Pv0 = � + 2�2 � − 2

�� − 1�3 −
�1

�
�2

+ 
− 5
�1

�
+

�2

�2 −
1

18

�3

�3 ��3, �42�

�� = ln��3/v0� + ln � + �
8 + 3�� − 3��

�1 − ��3

−
�1

�
2� + 
− 5

�1

�
+

�2

�2 −
1

18

�3

�3 �3�2

2
. �43�

We remark that these results need no further orientational
approximations as all effects of anisotropy are exactly in-
cluded in �1,2,3.

The results for the binodals are shown in Fig. 10. For
each of the adhesive coverages depicted, both theoretical
treatments predict that the binodal line for the two-patch
model lies above its counterpart for a single patch. This
could be expected on physical grounds, since a more distrib-
uted region of adhesion usually facilitates the aggregation
process. A closer analysis, however, indicates that this is not
always the case. This is shown in Fig. 11 where we report the
change in the critical point as a function of the adhesive
coverage n�0 of the sphere surface. The difference between
one and two patches decreases as � increases, as expected,
but it is clearly visible through the whole range of existence.
Remarkably, there is an inversion of the two curves around

FIG. 10. �Color online� Dependence on the adhesive coverage n�0 of the
binodal line calculated from the modified Carnahan–Starling free energy of
Eq. �37� �top panel� and from the C1 approximation of Eq. �40� �bottom
panel�. The one-patch �n=1� and two-patch �n=2� systems are compared at
the same total coverage.
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80% coverage. For approximately n�0�0.8 the critical tem-
perature for two patches lies above its one-patch counterpart.
This means that the fluid-fluid transition line is encountered
at higher temperature when an identical adhesive coverage is
distributed over two spots rather than consolidated into a
single big patch. However, this is no longer true when the
size of the patch becomes too small. The reason is that under
such conditions, it is then possible to bind three or more
particles within a single patch, whereas at most two particles
�one on each of the two opposite patches� can be attached in
the two-patch case.

An additional noteworthy feature of Fig. 11 is the exis-
tence of a kink at �=� /3 �50% coverage� in the two-patch
case. The kink is related to the degeneracy illustrated in Fig.
6. A similar kink occurs in the single-patch curve at �
=5� /6 �93.3% coverage�. Again, this stems from degen-
eracy, as illustrated in Fig. 4.

Due to the inherent difficulty of tracing out critical tem-
peratures to low coverage, we have been unable to verify the
crossing of the one- and two-patch critical temperatures by
Monte Carlo �MC� simulations. Figure 11 reports MC results
down to around 60% coverage and the two-patch critical
temperature is always above the one-patch case. We suspect,
however, that an inversion might still occur in MC simula-
tions, but at lower values of �0, as yet inaccessible to our
simulations.

The sensitivity of the shape and location of the coexist-
ence curve to the geometry of the adhesive distribution is
quite a remarkable feature of this archetypal patchy model. It
seems likely, therefore, that a proper understanding of ex-
perimentally determined phase diagrams of globular proteins
should take into account the nonuniformity of their surfaces
and consequently of their interactions.

VI. PERCOLATION

A further interesting issue, already discussed in the con-
text of the isotropic model, is the percolation threshold,42,50

to which we now turn.

A. Virial expansion

In one-patch systems only dimers can form for � up to
� /6, while clusters of any size are in principle possible
above this threshold. In order to study the percolation thresh-
old we can use the strategy devised in Ref. 51. Based on the
definition of the connectedness correlation function �see
later�, the percolation threshold is signaled by the divergence
of the mean cluster size

S = 1 + �� dr12�h+�r12,�1,�2���1,�2
, �44�

where h+ is the pair connectedness function, which is related
to the direct connectedness function c+ by the Ornstein–
Zernike equation. Both are related to the connected part of
the Mayer function f+�1,2�= f�1,2�− fHS�1,2� as given in
Eq. �B2�, fHS�1,2� being the HS part as given by Eq. �B3�.
As in the case of Eq. �22� we assume that

�ĉ+�k,�1,�3�ĥ+�k,�3,�2���3

� �ĉ+�k,�1,�3���3
�ĥ+�k,�3,�2���3

. �45�

The average Fourier transform of the direct connected-
ness function ĉ+�k�= �ĉ+�k ,�1 ,�2���1,�2

at k=0 then identi-
fies the threshold by the equation

�ĉ+�0� = 1. �46�

Upon power expansion in the density we have

ĉ+�0� = �
n=2

�

ĉn
+�0��n−2 = ĉ2

+�0� + �ĉ3
+�0� + O��2� . �47�

Using the earlier decomposition of the Mayer function the
first two coefficients are found to be

ĉ2
+�0� =� dr12�f+�1,2���1,�2

, �48�

ĉ3
+�0� =� dr12dr13��f+�1,2�fHS�1,3�fHS�2,3�

+ 3fHS�1,2�f+�1,3�f+�2,3�

+ f+�1,2�f+�1,3�f+�2,3����1,�2,�3
. �49�

An analysis following that in Appendix B then yields

ĉ2
+�0�/v0 = 24

�1

12�
, �50�

ĉ3
+�0�/v0

2 = 60
�1

12�
− 432

�2

�12��2 + 288
�3

�12��3 . �51�

To first order in the density, the percolation threshold is then
given by a straight line

� = 2�1� . �52�

The next order already yields a more complex solution in-
volving both �2 and �3,

FIG. 11. �Color online� Dependence of the critical reduced temperature on
the total adhesive coverage n�0 for n=1 and 2 patches, calculated from the
C1 approximation of Eq. �40� and from MC. The inset shows the critical
packing fraction.
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� =
− 6�1�2 + �6�3/2��3 + 6�1

2� − 18�2� + 30�1�2

�3 − 18�2� + 30�1�2 . �53�

We then see that for �−����+ with

�± =
− 6��1

2 − 3�2� ± �36��1
2 − 3�2�2 − 120�1�3

60�1
2 , �54�

Equation �53� has no real solutions. Clearly, the acceptable
part of the solution is that for ���−.

B. C1 integral equation

The unphysical loss of the solution for the percolation
threshold as obtained from the virial expansion is present
also in the isotropic SHS model ��=��. This shortcoming
does not occur in an integral equation approach.50 Within the
Cn class of closures a crucial role is played by the angular

average of the cavity function at contact ȳ̄= �y�r12

=	 ,�1 ,�2 ,�12�
2�1,2���1,�2,�12
. Its density expansion

reads

y�Cn = y0 + y1� + y2�2 + . . . , �55�

where yn=yn��� is related to the reduced virial coeffi-
cients bn by Eq. �41�. For y0 and y1 they have already
been computed in Eq. �33�. The percolation
threshold is then given by �ȳCn=� where
ȳCn= �yCn�r12=	 ,�1 ,�2 ,�12�
�1,2���1,�2,�12

and yCn�r12

=	 ,�1 ,�2 ,�12� is the contact cavity function within the Cn
approximation.

Since 
2=
 then y� = ȳ and within the C0 approximation
�ȳC0=y0� we find

� = �1� , �56�

whereas within the C1 approximation �ȳC1=y0+y1�� we find

� =
− 6�1�2 + �12�3/2��3 + 3�1

2� − 12�2� + 30�1�2

�3 − 12�2� + 30�1�2 .

�57�

Now the loss of solution occurs between

�± =
− 3��1

2 − 4�2� ± �9��1
2 − 4�2�2 − 120�1�3

30�1
2 . �58�

Note that at small values of � a gap may also appear in the
C1 percolation threshold for ��1.21 in the one-patch model
and for ��1.22 in the two-patch case. Figure 12 summarizes
our findings and compares with MC simulations. From the
figure we see that for � close to � the percolation threshold
of the two-patch model lies above that of the one-patch case
at same total surface adhesive coverage, while the opposite
trend is observed at lower �. This mirrors our previous re-
sults for the coexistence curve.

Another quantity which is useful to assess the onset of a
phase transition is the average coordination number, defined
by

Z = �� dr12�h+�1,2���1,�2,�12
. �59�

One finds

Z = 2
�

�
ȳCn, �60�

which on the percolation threshold gives Z=2. This predic-
tion is compared with MC results in Fig. 13 where we show
the average coordination number at the percolation threshold
obtained from the MC simulations for the one- and two-
patch models at 60% coverage.

We are now in a position to summarize the phase dia-
gram for one and two patches within the C1 approximation.
This is reported in Fig. 14. For two patches, the C1 phase
diagram �coexistence curve and percolation line� is com-
pared with MC results in Fig. 15 both for the full isotropic
case �100% coverage� and for 60% coverage. Note that while
the percolation line terminates at the point shown, the coex-
istence curve has a solution for the whole range of packing
fraction considered. However, we have chosen to terminate
the plot for the same value of � as the percolation line.

FIG. 12. �Color online� Percolation thresholds for various total adhesive
coverages as calculated from the C1 approximation �lines�, Eq. �57�, and
MC simulation �points�. The one-patch �n=1� and two-patch �n=2� cases
are compared at the same total coverage.

FIG. 13. Average coordination numbers at the percolation threshold for the
one- and two-patch models at 60% coverage, obtained through MC. The
continuous line is the prediction from the integral equation theory. The
isotropic case is also reported for comparison.
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VII. PHASE DIAGRAM AND ADDITION OF ADHESIVE
BACKGROUND

So far we have considered the case of adhesive patches
on hard spheres. The disadvantage of this model is that there
is no fluid-fluid transition below a certain surface coverage
�0. We have also shown that at fixed surface coverage the
liquid more easily forms if the adhesion is distributed in
different patches on the sphere surface for sufficiently large
patches and we expect the opposite to be true for low cov-
erage.

One could argue that a more physical model should have
a strongly directional potential mimicking, e.g., active sites
in a globular protein, in addition to an underlying isotropic
attractive potential favoring a general fluid-fluid phase tran-
sition. To this aim, we modify our potential by adding a
uniform adhesive background to each sphere on top of which
a patchy potential of the type considered so far is active. This
effect can be obtained by a simple substitution 
→1+�

with � measuring the strength of adhesion on the patches,
yielding

�1 → 1 + ��1, �61�

�2 → 1 + 2��1 + �2�2, �62�

�3 → 1 + 3��1 + 3�2�̄2 + �3�3, �63�

where

�̄2 = �
�1,2�
�1,3���1,�2,�3
��12=�/3� . �64�

The phase diagram is now modified as depicted in Fig. 16
where we have set �=1 to be the strength of the patches
throughout. In this case we see that even a small sticky patch
�of amplitude ��0.5� is sufficient to raise both the binodal
and percolation threshold of the isotropic model. At equal
coverage, the binodal and percolation threshold of the two-
patch model lie below their one-patch counterparts, in agree-
ment with the observed trend in the absence of background
adhesion.

Note that the critical point is now less sensitive to the
size of the patches because an isotropic SHS—rather than a
hard sphere—is now the limiting case as �→0. Indeed, the
critical point does not move along � while it covers the
whole range �c���2�c ��=1�, where �c is the critical re-
duced temperature of the isotropic model �see Fig. 17�. The
critical point shifts of the one- and two-patch models are
now almost indistinguishable even though the crossing at
80% coverage still remains.

VIII. CONCLUSIONS

In this work we have studied, through integral equation
theories and Monte Carlo simulations, the structure, percola-

FIG. 14. �Color online� Phase diagram in the C1 approximation, for various
values of the adhesive coverage n�0. The one-patch �n=1� and two-patch
�n=2� models are compared at the same total coverage.

FIG. 15. �Color online� Comparison of the C1 approximation with MC
simulation �dots� for the phase diagram of particles with two patches. The
MC isotropic phase diagram is taken from Ref. 42.

FIG. 16. �Color online� Dependence of the binodal line of patchy adhesive
spheres with a background adhesion on the total surface coverage n�0 of the
patches: in the upper panel as calculated from the modified Carnahan–
Starling free energy of Eq. �37�; in the lower panel as calculated from the
C1 approximation, Eq. �40�.
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tion, and fluid-fluid coexistence curves of a model of hard
spheres with one or two uniform sticky patches on their sur-
face. Particles interact through an adhesive Baxter potential
only if patches on different spheres are suitably oriented and
as hard spheres otherwise. Unlike most previous studies, we
have been able to analyze in some detail the dependence of
the aforementioned properties on the size of the patch and its
interplay with the number of patches.

The integral equation theory is based on the first two
approximations �C0 and C1� of a class of closures Cn which
have already proved to provide a good qualitative represen-
tation of the exact behavior and are almost fully analytical.
The comparison between the analytical work and Monte
Carlo simulations indicates that C1 yields a gratifying quali-
tative description of the phase diagram notwithstanding the
expected limitation due to its low density nature. While for
the thermodynamics the results from the integral equation
theories are exact within the given closure, for the percola-
tion problem and the structure an additional orientational
mean field approximation is necessary to decouple the orien-
tational average.

Radial distribution functions within the C0 and C1 inte-
gral equation theories exhibit a characteristic jump at r=2	
�whose magnitude depends on the patch angle �� and a cusp
at r=3	. The coexistence and percolation lines move to
lower temperature as the patch angle decreases from � �the
isotropic case� to zero �hard spheres�. For a fixed surface
coverage above approximately 80%, the curves of the two-
patch case lie above the corresponding single-patch ones,
while the opposite trend is observed below that point. We
have suggested that this is due to two patches of sufficiently
large size being able to form bonds to more particles than
can a single patch. We have also argued that this reasoning
does not apply at low coverage, and that, in fact, the opposite
situation might be expected. The crossover is not observed in
the MC simulations within the range of adhesive coverage
studied here �about 60%�, but we cannot exclude the possi-
bility for lower coverage, where the simulations converge
very slowly. When an adhesive background is included in
addition to the patches, both the liquid and percolating phase
of the system are favored with respect to the isotropic case
even in the presence of very small patches.

In spite of the limited number of cases �one or two
patches� addressed in the present work, our analysis suggests
that both the total fraction of the surface covered by adhesion
and the number of patches are crucial parameters in control-
ling the location of the critical point. In the limit of a single
bond per patch, our analysis is consistent with a recent
suggestion52 of a generalized law of corresponding states for
anisotropic patchy interactions. We remark that, from the
purely theoretical point of view, there exist only few para-
digmatic toy models with anisotropic interactions amenable
to analytical or semianalytical treatment.

Our analysis can be regarded as complementary to recent
investigations of the phase diagrams of globular
proteins8,53,54 in that our starting point is the isotropic sticky
hard sphere from which some adhesion is removed, rather
than a hard sphere to which highly localized attractive spots
are added. This approach goes beyond the limitation of one
bond per patch, which is an essential feature of Wertheim
thermodynamic perturbation theory. The price to pay is, of
course, that only a qualitative agreement with MC simula-
tions can be achieved.

It would be interesting to extend the present work in
some respects. In view of the difficulties of MC simulations
in probing low coverage, a comparison with a numerical so-
lution of a more robust closure such as, for instance, the
Percus–Yevick approximation which has a full analytical de-
scription in the isotropic case, would provide a more quanti-
tative assessment of the results presented here. Such a solu-
tion would also help to evaluate the �uncontrolled� angular
decoupling approximation exploited in the present analysis
of structure and the percolation threshold. Work along these
lines is in progress and will be presented in a future
publication.
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APPENDIX A: THE LAW OF CORRESPONDING
STATES

Consider the simplest possible dependence ��ŝ1 , ŝ2�
= ŝ1 · ŝ2 and assume that 
�1,2�=��ŝ1 , ŝ2�, i.e., the adhesion
coefficient does not depend on r̂12=r12 /r12. Within the
Weeks–Chandler–Andersen perturbative expansion55 of the
Helmholtz free energy ASHS one finds

��ASHS − AHS�
N

=� d�1�d�2�a�1��r1,r2;���e�1,2�

+� d�1�d�2�d�3�d�4�

�a�2��r1,r2,r3,r4;���e�1,2��e�3,4�

+ . . . , �A1�

where d�i� is a short-hand notation for drid�̃i, with d�̃i the
average solid angle sin �id�id�i / �4��, AHS the Helmholtz
free energy of the reference hard sphere �HS� system

FIG. 17. �Color online� Dependence of the critical reduced temperature on
the adhesive coverage in the patchy model with a uniform adhesive back-
ground, calculated from the C1 approximation, Eq. �40�. The inset shows
the behavior of the critical packing fraction.
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�e�1,2� =

�1,2�

12�
��r12 − 	� , �A2�

and the functions a�n� are expressed in terms of the correla-
tion functions of the reference system which only depend on
the packing fraction �=��	3 /6, with � as the density. We
see then that the angular dependence in 
 factorizes and one
finds

��ASHS − AHS�
N

= �
i

A�i����
 �1

12�
�i

, �A3�

where �1=�d�̃1d�̃2
�1,2�. This analysis shows how, in this
case, the law of corresponding states holds. For example, if
�=g��� is the spinodal or binodal of the SHS system with
isotropic interaction �
=1�,27,56,57 then the spinodal or bin-
odal of the SHS with directional adhesion will be �
=�1g���, which will lie above that of the isotropic system if
�1
1 and below otherwise.

APPENDIX B: THE THIRD VIRIAL COEFFICIENT

In this appendix we provide a derivation of Eqs. �6�–�9�.
We start from the usual definition of the third virial coeffi-
cient

B3 = −
1

3V
� dr1dr2dr3�f�1,2�f�1,3�f�2,3���1,�2,�3

,

�B1�

where, in line with Eq. �2�, the Mayer function can split into
two terms

f�i, j� = fHS�i, j� +
	

12�

�i, j���rij − 	� . �B2�

In the earlier equation we have set the HS part to the usual
form

fHS�i, j� = − ��	 − rij� . �B3�

Upon expanding the product, one can easily find

�B3 = B3 − B3
HS = �B3

�1� + �B3
�2� + �B3

�3�, �B4�

where B3
HS=5�2	6 /18 is the HS result and

�B3
�1� = −

1

V

 	

12�
�� dr1dr2dr3�fHS�1,2�fHS�1,3�

�
�2,3���r23 − 	���1,�2,�3
, �B5�

�B3
�2� = −

1

V

 	

12�
�2� dr1dr2dr3�fHS�1,2�

�
�1,3���r13 − 	�
�2,3���r23 − 	���1,�2,�3
,

�B6�

�B3
�3� = −

1

3V

 	

12�
�3� dr1dr2dr3�
�1,2���r12 − 	�

�
�1,3���r13 − 	�
�2,3���r23 − 	���1,�2,�3
.

�B7�

The earlier integrals are most conveniently evaluated in bi-
polar coordinates by introducing r12=r2−r1 and r13=r3−r1.

This leads to r23=�r12
2 +r13

2 −2r12r13r̂12· r̂13 where it is most
convenient to choose r̂13 as the z axis. For �B3

�1� one finds

�B3
�1� = − 
 	

12�
�� dr23dr12��	 − r12���	 − �r12 − r23��

���r23 − 	��
�2,3���2,�3
. �B8�

Here one first performs the integration over r12, which covers
twice a spherical cap of height 	 /2 and then the straightfor-
ward integration over r23. Clearly the anisotropic part de-
couples, thus yielding the isotropic part times �1 as claimed.
For �B3

�2� a little more care is necessary. One first obtains

�B3
�2� = 
 	

12�
�2�

0

�

dr12r12
2 ��	 − r12�

��
0

�

dr13r13
2 ��	 − r13�� d�12d�13

����r12
2 + r13

2 − 2r12r13 cos �12 − 	�

��
�1,3�
�2,3���1,�2,�3
. �B9�

After a first integration over r13, an additional integration
over cos �12 then requires �13�� /3 �corresponding to the
maximum available angle for all three particles in reciprocal
contact�. This also yields a normalization factor 4
=1 /sin2�� /6� in order to have the correct limit 
�i , j�→1 for
all �i , j�. The final result is

FIG. 18. Basic geometry for the calculation of R1��� in Eq. �C1�. The
required solid angle is the overlap of the two cones of width � �the darkly
shaded region in the sketch�.
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�B3
�2� =

�2	6

36�2

1

4�
� d�13

�4�
�1,2�
�2,3��
�

3
− �13��

�1,�2,�3

, �B10�

thus yielding the isotropic part times �2 as reported in Eq.
�8�. An almost identical procedure also gives

�B3
�3� = − 
 	

12�
�38�2	2

3
�

0

�

dr12r12
2 ��r12 − 	�

��
−1

+1

d�cos �12����r12
2 + 	2 − 2r12	 cos �12 − 	�

��
�1,2�
�1,3�
�2,3���1,�2,�3
, �B11�

which, after an integration over the angular variables, leads
to the desired decoupling for the anisotropic part �3 as given
in Eq. �9�. Note that in this configuration all three spheres are
necessarily touching and this fixes the angles �ij to a well
defined value given in Eq. �9�. This completes the derivation
of Eq. �6�.

APPENDIX C: COEFFICIENTS �2 AND �3
FOR THE ONE-PATCH CASE

Here we give the analytic expressions for the coefficients
Q1 and R1 used in Eqs. �12� and �13� of the main text in
terms of characteristic integrals which are then evaluated nu-
merically. The basic procedure follows a similar analysis car-
ried out in a different context,58 which requires the calcula-
tion of the solid angle associated with the intersection of two
identical patches on the same sphere as indicated in Fig. 18.
For �3, one can easily see that for ��� /6 there is no pos-
sibility of intersection, even in the close-packed configura-
tion. For ��� /6 the form of the resulting integral can be
most conveniently written in slightly different ways depend-
ing on the amplitude � of the patch

R1��� = �b,1����
� −
�

6
��
2�

3
− ��

+ �b,1����
� −
2�

3
��
5�

6
− ��

+ �b,1����
� −
5�

6
� , �C1�

where the various terms are given in terms of the integrals

�b,1��� =
1

�
�

2�/3−�

�/2

d� sin � arccos
 cos � − cos � cos 2�/3
sin � sin 2�/3 � , �C2�

�b,1��� = 1 −
1

�
�

�−2�/3

�/2

d� sin � arccos
 cos�� − �� − cos � cos �/3
sin � sin �/3 � , �C3�

�b,1��� = 1 − 2 sin2
� − �

2
� . �C4�

For example �b,1 given in Eq. �C2� is the simplest integral resulting from the calculation of the overlapping region of the
two cones of width � as depicted in Fig. 18.

For �2 an additional complication arises from the additional degree of freedom given by the fact that only two of the three
spheres are �in general� in contact. One finds

Q1��� = �a,1����
�

6
− �� + �a,1����
� −

�

6
��
�

2
− �� + �a,1����
� −

�

2
��
5�

6
− �� + �a,1����
� −

5�

6
� , �C5�

with

�a,1��� =
2

�
�

0

2�

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �C6�

�a,1��� =
2

�
�

0

�/3

d�� sin ���
�/2+��/2−�

�/2

d� sin � arccos
 cos � − cos � cos��/2 + ��/2�
sin � sin��/2 + ��/2� � , �C7�

�a,1��� =
2

���

2
− �

0

�/3

d�� sin ���
�−�/2−��/2

�/2

d� sin � arccos
 cos�� − �� − cos � cos��/2 − ��/2�
sin � sin��/2 − ��/2� �� , �C8�
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2
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d�� sin ���
�−�/2−��/2

�/2
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2
���

2
�2 cos�2�� − 1�� . �C9�

APPENDIX D: COEFFICIENTS �2 AND �3 FOR THE TWO-PATCH CASE

Here we give the analytic expressions for the coefficients Q2 and R2 used in Eqs. �15� and �16� of the main text

Q2��� = �a,2����
�

6
− �� + �a,2����
� −

�

6
��
�

3
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