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We study the polydisperse Baxter model of sticky hard spheres~SHS! in the modified mean
spherical approximation~mMSA!. This closure is known to be the zero-order approximation C0 of
the Percus-Yevick closure in a density expansion. The simplicity of the closure allows a full
analytical study of the model. In particular we study stability boundaries, the percolation threshold,
and the gas-liquid coexistence curves. Various possible subcases of the model are treated in details.
Although the detailed behavior depends upon the particularly chosen case, we find that, in general,
polydispersity inhibits instabilities, increases the extent of the nonpercolating phase, and diminishes
the size of the gas-liquid coexistence region. We also consider the first-order improvement of the
mMSA ~C0! closure ~C1! and compare the percolation and gas-liquid boundaries for the
one-component system with recent Monte Carlo simulations. Our results provide a qualitative
understanding of the effect of polydispersity on SHS models and are expected to shed new light on
the applicability of SHS models for colloidal mixtures. ©2005 American Institute of Physics.
@DOI: 10.1063/1.1831275#

I. INTRODUCTION

In sterically stabilized colloidal mixtures, particles are
coated with polymer brushes to prevent irreversible floccu-
lation due to van der Waals attraction.1 If the solvent is a
moderate one, a lowering of the temperature yields very
strong attraction with a range much less than the typical col-
loidal size. In microemulsions of polydispersed spherical wa-
ter droplets each coated by a monolayer of sodium di-2-
ethylhexylsulfosuccinate dispersed in a continuum of oil, the
droplets interact with each other via a hard core plus a short
range attractive potential, the strength of which increases
with temperature.2 For these systems, a very useful theoreti-
cal model is the sticky hard sphere~SHS! model proposed by
Baxter3 long time ago for atomic liquids. In the original Bax-
ter solution3,4 the one-component Ornstein-Zernike~OZ! in-
tegral equation was analytically solved within the Percus-
Yevick ~PY! approximation. Successive extension to
mixtures,5 however, proved to be a formidable task in view
of the fact that a large@infinite ~Ref. 6!# number of coupled
quadratic equations ought to be solved numerically in order
to have a complete understanding of both thermodynamics
and structure of the model. This is the reason why, to the best
of our knowledge, only binary mixtures have been explicitly
discussed so far in this framework.5 Moreover it has been
proven by Stell7 that sticky spheres of equal diameter in the
Baxter limit are not thermodynamically stable and size poly-
dispersity can be expected to restore thermodynamic
stability.

Motivated by this scenario, it was recently proposed8 a

simpler approximation@modified mean spherical approxima-
tion ~mMSA! closure# having the advantage that also the
multicomponent case could be worked out analytically.9,10

Further analysis and comparison with both Monte Carlo
~MC! and PY results8,11,12 in the one-component case, have
shown that the mMSA closure for Baxter model is a reliable
one up to experimentally significant densities. The price to
pay for this simplification is that only the energy equation of
state gives rise to a critical behavior, the other two routes
yielding either a noncritical behavior~compressibility!, or a
diverging equation of state~virial!.

In this work we pursue this investigation by studying the
multicomponent version of the model proposed in Ref. 8,
and analyzing various consequences. We first solve the mul-
ticomponent version of Baxter model within the mMSA clo-
sure, and show that the solution is equivalent to the one
derived in Ref. 9 for a companion SHS model. The solution,
derived in terms of an auxiliary function called Baxter factor
correlation, turns out to be formally similar to that derived
with the PY closure. However, and this is the crux of the
matter, the matrix function representing the stickiness param-
eters is unconstrained, unlike the PY counterpart. In order to
make further progress and derive the multicomponent energy
equation of state, a further assumption is necessary on the
matrix representing the stickiness parameters. As discussed
previously~see Ref. 9 for details! a remarkable simplification
occurs when the general element of this matrix has the form
of a sum of dyads~i.e., it is dyadic!. In these cases the nec-
essary matrix inversion can be carried out analytically and all
measurable quantities can then be computed. Physically, this
reduction to a dyadic form amounts to assume a relation
among polydispersity in size and polydispersity in stickiness,
that is on the adhesion forces. In addition to the two cases
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proposed in Ref. 9~denoted as cases I and II in the follow-
ing! and that proposed in Ref. 13~case IV!, we shall consider
two further cases. The first one~case III! is a physically
motivated variant of case I, whereas the second one~case V!
has its main justification in the simplifying features occur-
ring when one attempts to go beyond the mMSA closure
with a density perturbative approach~to first order this will
be called C1, as in Ref. 8, for reasons which will become
apparent in the rest of the paper!.

The main results of our analysis are the following. We
derive the instability curves in three of the considered cases
~cases I–III! within the mMSA approximation and analyze
the effect of polydispersity in some detail. In order to test the
reliability of the mMSA approximation, we also consider the
first-order correction C1 in the one-component case and
compare with the PY result.

Next we consider the effect of polydispersity on the per-
colation threshold. This is an interesting phenomenon on its
own right and has attracted considerable attention
recently,11,12,14–16being a paradigmatic example of floccula-
tion instability. In particular, recent Monte Carlo
simulations11,12 on monodisperse~one-component! spheres
with sticky adhesion have clearly tested the performance of
analytical calculations based on the PY approximation.15,16

We then study the percolation transition as a function of
polydispersity in all above mentioned cases within mMSA.
Again we can discriminate the effect of polydispersity on the
percolation line, and also compare it with the first-order cor-
rection C1, the PY approximation, and MC simulations in the
one-component case.

Next we consider phase equilibrium. A major obstacle to
the analysis of phase transition in polydisperse systems is
posed by the fact that, in principle, one has to deal with a
large~infinite! number of integral nonlinear equations corre-
sponding to the coexistence conditions among various
phases. In this model, however, as it also occurs in other
simpler models such as hard spheres~HS!,17 van der Waals
fluids18 and in more complex cases such as factorizable hard-
sphere Yukawa potentials,19,20 the task can be carried out in
full detail in view of the fact that the~excess! free energy
depends upon only a finite number of moments of the size
distribution function. In the particular case of two-phase co-
existence, we derive the cloud and shadow curves of all
cases in the mMSA approximation. We compare the results
with those derived earlier for a polydisperse van der Waals
fluid,17 and discuss analogies and differences in this respect.
Finally we compare the results of the mMSA one-component
case with the first-order correction, the PY approximation,
and the results of MC simulations.

The plan of the paper is as follows. In Sec. II we define
the multicomponent SHS model, give the solution for Baxter
factor correlation function in the mMSA~C0! approximation,

and define the various cases of polydispersion models taken
under exam; in Sec. III we give the solution for Baxter factor
correlation function in the C1 approximation and show how
case V is particularly suitable to study the polydisperse sys-
tem analytically; in Sec. IV we analytically derive the insta-
bility boundaries; in Sec. V we find analytically the percola-
tion thresholds; in Sec. VI we derive numerically the two-
phase coexistence curves; in Sec. VII we lay down our
conclusions and further developments.

II. BAXTER MODEL AND MODIFIED MSA SOLUTION

In Baxter model of SHS1, one starts adding to the HS
potential a square-well tail with21

f i j ~r !52kBT lnS 1

12t i j

Ri j

Ri j 2s i j
D , s i j <r<Ri j , ~1!

wheres i j 5(s i1s j )/2 (s i being the HS diameter of species
i ), Ri j 2s i j denotes the well width,kB is Boltzmann con-
stant, T the temperature, and the dimensionless parameter
t i j

21>0 measures the strength of surface adhesiveness or
‘‘stickiness’’ between particles of speciesi and j (t i j is also
an unspecified increasing function ofT). The sticky limit
corresponds to taking$Ri j %→$s i j %.

The Baxter form of the OZ integral equations for this
model admits a very simple analytic solution if one uses the
following mMSA:

ci j ~r !5 f i j ~r ! for r>s i j , ~2!

whereci j (r ) and f i j (r )5exp@2bfij(r)#21 are the direct cor-
relation function and the Mayer function, respectively@b
5(kBT)21#. This can be easily inferred by using the formal-
ism introduced in Ref. 8. As pointed out in that reference, the
mMSA closure can be reckoned as a zero-order approxima-
tion in a perturbative expansion, and hence it will also be
denoted as C0 henceforth. In terms of Baxter factor correla-
tion functionsqi j (r ), its extension to mixtures reads

qi j ~r !5H 1
2 ai~r 2s i j !

21~bi1ais i j !~r 2s i j !1Ki j , Li j 5~s i2s j !/2<r<s i j ,

0, elsewhere,
~3!

FIG. 1. Schematic diagram showing the area of the contact surface between
a particle of speciesi and a particle of speciesj .
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with p being the number of components,r i the number den-
sity of speciesi , and

Ki j
(mMSA)5

1

12t i j
s i j

2 [Ki j
0 . ~6!

We remark that although Eqs.~3!–~5! are formally iden-
tical to their PY counterpart, this result is in fact simpler in
such they differ in the quantityKi j , which in the PY ap-
proximation reads21

Ki j
(PY)5Ki j

0 yi j
(PY)~s i j ![

1

12
l i j s i j

2 , ~7!

whereyi j
(PY)(s i j ) is the contact value of the PY cavity func-

tion. In general, the parametersl i j can be determined only
numerically by solving a set ofp(p11)/2 coupled quadratic
equations,5,21 and this makes the multicomponent PY solu-
tion of limited interest from the practical viewpoint. In par-
ticular, a global analysis of the phase diagram proves to be a
formidable task within the PY approximation.5 On the other
hand, in view of the simplicity of Eq.~6! with respect to its
PY counterpart Eq.~7!, this is indeed possible within the
mMSA ~C0! approximation. The above results is, moreover,
fully equivalent to a parallel but different sticky HS model
~SHS3! studied by us in previous work.8,9 Hence, as dis-
cussed in those references, this analysis can be pursued ana-
lytically provided thatKi j has a dyadic form. To this aim, we
consider polydisperse fluids with HS diameters distributed
according to a Schulz distribution.22

As regards stickiness, we choose to keep it either con-
stant or related to the particle size. There are two main rea-
sons for this. First, one expects the adhesion forces to depend
upon the area of the contact surface between two particles
~see Fig. 1!, and hence on their sizes. Second and more prac-
tical reason is that this is a simple way of obtaining the
required factorization. As the stickiness-size relation is not
clearly understood, we consider five different possibilities,
denoted as cases I–V henceforth. The three simplest choices
are

1

t i j
5

1

t

^s&2

s i j
2 ,⇒@Ki j

(mMSA)#case I5
1

12t
^s&2, ~8!

1

t i j
5

1

t

s is j

s i j
2 ,⇒@Ki j

(mMSA)#case II5
1

12t
s is j , ~9!

1

t i j
5

1

t

^s2&
s i j

2 ,⇒@Ki j
(mMSA)#case III5

1

12t
^s2&, ~10!

where ^s& is the average HS diameter (^F&[( ixiFi , here
xi5r i /r is the molar fraction of speciesi with r5( ir i the
total number density!, andt is assumed to depend only on
the temperature, while the remaining factor int i j

21 is a mea-
sure of stickiness strength and is related to the particle sizes.

The physical interpretation of these choices is the following.
In case I the stickiness is assumed to be proportional to the
surface contact area of two colloidal particles having average
size ^s&, whereas in case II the adhesion of each particle is
linearly related to its size. Case III, finally, is a variant of
case I where one considers an average stickiness rather than
the stickiness of an average particle.

In all these cases theKi j
(mMSA) matrix can be factorized as

Ki j
(mMSA)5YiYj , ~11!

with Yi having dimensions of length@Yi5(A12t)21^s&,
Yi5(A12t)21 s i , andYi5(A12t)21 ^s2&1/2 in cases I, II,
and III, respectively#. Note that cases I and II have already
been exploited by us in previous work.9

We also consider a case similar to that proposed by Tut-
schka and Kahl13 ~henceforth denoted as case IV!

1

t i j
5

1

t
. ~12!

In this case theKi j
(mMSA) matrix can be written as a sum of

three factorized terms@as it can be immediately inferred by
expanding the squares i j

2 5(s i1s j )
2/4] and has the interest-

ing physical interpretation of being proportional to the area
of the actual contact surface 4ps i j

2 between particles of spe-
cies i and j . Finally, and for reasons related to the C1 ap-
proximation that will be further elaborated below, we con-
sider case V defined by the linear~rather than quadratic!
dependence

1

t i j
5

1

t

^s&
s i j

, ~13!

in this case theKi j
(mMSA) parameters can be written as a sum

of two factorized terms.

III. THE C1 APPROXIMATION

It was recently argued8 in the one-component case, that
the mMSA~C0! approximation can be improved by includ-
ing the next order term in the density expansion of the direct
correlation function. Its extention to multicomponent mix-
tures reads

ci j ~r !5 f i j ~r !F11(
m

rmg im j
(1) ~r !G , r>s i j , ~14!

where

g im j
(1) ~r !5E f im~ ur2r 8u! f m j~r 8!dr 8

5
2p

r E
0

`

ds s fim~s!E
ur 2su

r 1s

dt t fm j~ t !, ~15!

is the first-order coefficient in the density expansion of the
partial indirect correlation functionsg i j (r ). As discussed in
Ref. 8, if we retain in the PY closure only the terms corre-
sponding to the zero- and first-order expansion in density we
recover the C1 approximation~14!. It turns out that Baxter
factor correlation function can still be cast in the form, Eqs.
~3!–~5! but theKi j parameters have the form
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Ki j
(C1)5Ki j

0 yi j
(C1)~s i j !, ~16!

where the partial cavity functions at contact for this closure
are

yi j
(C1)~s i j !511(

m
rmg im j

(1) ~s i j !. ~17!

Using in Eq. ~15! f i j (r )52u(s i j 2r )1d(r 2s i j )s i j /
(12t i j ), we find after some algebra the following result

g im j
(1) ~s i j !5

2p

s i j
H s im

2

12t im
F2

1

2
~sm j

2 2L jm
2 !1

sm j
2

12tm j
G

1
2

3
s i j Lmi

3 1
sm j

2

12tm j

1

2
~Lmi

2 2smi
2 !

1 1
4 ~sm j

2 2s i j
2 !~smi

2 2Lmi
2 !

1
1

3
s i j ~smi

3 2Lmi
3 !2

1

8
~smi

4 2Lmi
4 !J . ~18!

Because of the presence of the factor 1/s i j in Eq. ~18!, Ki j
(C1)

cannot be expressed as a sum of factorized terms if we use
any of the cases I, II, or III. Case IV, on the other hand,
would be tractable, but it would yieldKi j

(C1) as a sum of 14
factorized terms~proportional tos i

ns j
m with n,m50,1,2,3

exceptn5m50,3) which is unmanageable in practice. In
case V, on the other hand, a great simplification occurs and
we find

Ki j
(C1)5k01~s i1s j !k11s is j k2 , ~19!

where

k05h
1

576

^s&3^s2&

^s3&

1

t3 , ~20!

k15
1

24
^s&

1

t
1hS 1

576

^s&4

^s3&

1

t3

2
1

48

^s&2^s2&

^s3&

1

t2 1
1

24
^s&

1

t D , ~21!

k25hS 1

576

^s&3

^s3&

1

t3 2
1

24

^s&3

^s3&

1

t2 1
1

8

^s&^s2&

^s3&

1

t D ,

~22!

whereh5j3 is the packing fraction. The expression~19! is
slightly more complicated than theKi j

(mMSA) treated with case
IV, because of thek0 term. This noteworthy feature is the
main justification for the particular form of case V.

IV. PHASE INSTABILITIES

Our first task is the analysis of the phase instabilities for
the polydisperse system only in the mMSA using cases I, II,
and III.

The next level of approximation C1 is considerably more
laborious ~since the calculations for the C1 approximation

even in the simple case of case V requires determinants of
n-dyadic matrices withn.4) and we shall limit ourselves to
the one-component case for simplicity.

A. mMSA approximation for the discrete polydisperse
system

For p-component mixtures, one can define the following
generalization of the Bhatia-Thornton concentration-
concentration structure factor:23–25

SCC~k!Y S)
m

xmD 5uS~k!u (
i , j 51

p

~xixj !
1/2Si j

21~k!, ~23!

where uS(k)u denotes the determinant of the matrix
S(k) whose elements are the Ashcroft-Langreth partial
structure factors.26 Furthermore, theSi j

21(k) functions are the
elements of the inverse ofS(k), which can be expressed as

Si j
21~k!5d i j 2~r ir j !

1/2c̃i j ~k!5(
m

Q̂mi~2k!Q̂m j~k!, ~24!

with c̃i j (k) three-dimensional Fourier transform ofci j (r ),
Q̂i j (k)5d i j 22p(r ir j )

1/2q̂i j (k), andq̂i j (k) being the unidi-
mensional Fourier transform ofqi j (r ) (k is the magnitude of
the exchanged wave vector,d i j the Kronecker delta!.

Phase instability corresponds to the divergence of the
long wavelength limitSCC(k50), which is related to the
concentration fluctuations. Taking into account the relations

(
i , j

~xixj !
1/2Si j

21~0!5(
i

xiai
25~rkBTKT!215S ]bP

]r D
T

,

~25!

uS~0!u5uI2C~0!u215uQ̂~0!u22, ~26!

@whereKT is the isothermal compressibility,I the unit matrix
of order p, andC has elements (r ir j )

1/2c̃i j (k)], SCC(k50)
can be reexpressed as

SCC~0!

)mxm

5
1

uQ̂~0!u2~rkBTKT!
. ~27!

For a one-component system the divergence ofKT sig-
nals mechanical instability, associated with a gas-liquid
phase transition or condensation. However, a multicompo-
nent fluid usually becomes unstable whileKT remains finite
and different from zero. In this case, it is the vanishing of
uQ̂(0)u which causes the divergence ofSCC(0) and produces
a phase instability.24,25 Indeed if one tries to calculate the
locus of points in the phase diagram~t,h! where ( ixiai

2

50, using cases I, II, or III, discovers that such curves dis-
appear~the quadratic equations int have a negative discrimi-
nant! as soon as we switch on the size polydispersity letting
^s2&Þ^s&2. We remark that the exact nature of this instabil-
ity requires a more involved analysis and it will be deferred
to a future work.

The computation ofuQ̂(0)u, which usually becomes a
formidable task with increasingp, is rather simple for the
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mMSA solution of Baxter model whenKi j is factorized as in
Eq. ~11!. In fact, Q̂(k) becomes ann-dyadic ~or Jacobi!
matrix

Q̂i j 5d i j 1 (
n51

n

Ai
(n)Bj

(n) ~ i , j 51,...,p!, ~28!

with the remarkable property that its determinant, which is of
order p, turns out to be equal to a determinant of ordern
(!p for polydisperse fluids!.9 The necessary expressions are
reported in Appendix A.

For factorizedKi j ’s, one finds

Q̂i j ~0!5d i j 1
p

6
~r ir j !

1/2F 1

D
s j

31s i

3

D S j2

1

D
s j

31s j
2D

212Yi S j1,1

1

D
s j

31s jYj D G , ~29!

with

jm,n5
p

6
r^smYn&, ~30!

~^¯& denotes a compositional average, i.e.,^FG&
[( ixiFiGi). Note thatjm,05jm .

We emphasize that the decomposition of Eq.~29! into
Ai

(n) andBj
(n) is not unique. However,Q̂i j (0) of cases I and

III is 3-dyadic ~i.e., it containsn53 dyadic terms!, while
Q̂i j (0) of case II is simply 2-dyadic. As a consequence, one
has to calculate at most a determinant of order 3. The general
result for all three cases is

uQ̂~0!u5
1

D2 @~112j3!~1212j1,2!136j2,1
2 #. ~31!

Physically admissible states must satisfy the inequality
uQ̂(0)u.0 ~Ref. 27! and the stability boundary is reached
when uQ̂(0)u50, which yields

t55
^s&3

^s3&
h2S ^s&^s2&

^s3& D 2 3h2

112h
~case I!,

h~12h!

112h
~case II!,

^s&^s2&

^s3&
h2

^s2&3

^s3&2

3h2

112h
~case III!.

~32!

If the HS diameters follow a Schulz distribution, then the
stability boundary of cases I and III can be expressed as

t55 hS 1

M1M2
2

1

M2
2

3h

112h D ~case I!,

hS 1

M2
2

M1

M2
2

3h

112h D ~case III!,

~33!

whereM j511 js2 with s5@^s2&2^s&2#1/2/^s& measuring
the degree of size polydispersity.

The fluid is stable at ‘‘temperatures’’t higher than those
given by the previous equations~since uQ̂(0)u.0). Let us
now compare two mixtures with the same packing fractionh
but different polydispersity degrees. As depicted in Fig. 2 at

small h values, increasings at fixed h lowers the stability
curve of cases I and III. As shown by the left branch of the
curve~the opposite trend on the right-hand side of the figure
is not acceptable, since the mMSA closure can be a reason-
able approximation only in the low density regime! the onset
of instability occurs at lowert. As expected, polydispersity
renders the mixture more stable with respect to concentration
fluctuations. Quite surprisingly, on the other hand, the stabil-
ity boundary does not depend ons at fixedh in case II, and
all mixtures with different polydispersity have the same sta-
bility boundary as the one-component case (s50).

B. C1 approximation for the one-component system

As remarked, the C1 approximation yields rather more
complex expressions and here we restrict to the one-
component case. Yet, this example provides a flavor of how
this approximation would work in the multicomponent case
and could be compared with the result given byuQ̂(0)u50.
For the one-component system phase instability coincides
with the divergence ofKT . As from Eq.~25!

~rkBTKT!215a25F 112h

~12h!2 2
1

t
y(C1)~s!

h

12hG50,

~34!

where@see Eqs.~17! and ~18!#

y(C1)~s!511y1~t!h, ~35!

with

y1~t!5
5

2
2

1

t
1

1

12t2 . ~36!

The curve for the onset of mechanical instability is
shown in Fig. 2 and compared with the PY one

t5
1029/~12h!114h

12~112h!
. ~37!

FIG. 2. Curves for the onset of phase instability~the fluid is stable above the
curves shown! as obtained from the mMSA approximation for a monodis-
perses50 system, and for a polydisperse system withs50.2, and polydis-
persity chosen as in cases I, II, and III@see Eq.~32!#. We also show for the
one-component system the curve for the onset of mechanical instability
predicted by the C1 approximation@see Eq.~34!# and the one predicted by
the PY approximation@see Eq.~37!#.
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One clearly sees that the C1 stability boundary lowers and
shifts to the left in agreement with the PY result.

V. PERCOLATION THRESHOLD

In view of the simplicity of the mMSA~C0! solution,
one might expect that other quantities, besides those dis-
cussed so far, can be computed analytically. We now show
that this is indeed the case. The problem we address in this
section iscontinuum percolation. This problem is far from
being new.28 However, new activity along this line has been
stirred by recent and precise Monte Carlo results for the one-
component case,11,12 and it is then rather interesting to con-
sider its multicomponent extension. For the sake of com-
pleteness we now recall the basic necessary formalism.14–16

In the sticky limit the partial Boltzmann factors read

ei j ~r !5u~r 2s i j !1
Ki j

0

s i j
d~r 2s i j !, ~38!

whereu is the Heaviside step function andd the Dirac delta
function.

When studying percolation problems in the continuum is
useful to rewrite the Boltzmann factor as the sum of two
terms14,28 ei j (r )5ei j* (r )1ei j

1(r ), where

ei j* ~r !5u~r 2s i j !, ~39!

ei j
1~r !5

Ki j
0

s i j
d~r 2s i j !. ~40!

The corresponding Mayer functions will bef i j (r )5 f i j* (r )
1 f i j

1(r ), with

f i j* ~r !5ei j* ~r !21, ~41!

f i j
1~r !5ei j

1~r !. ~42!

The procedure to obtain equations ofconnectednessand
blocking functions from the usual pair correlation functions
and direct correlation functions is best described through the
use of graphical language. If we substitutef i j* and f i j

1 bonds
for f i j bonds in the density expansions for these functions,
then the connectedness functions, which we will indicate
with a cross superscript, are expressed as the sums of those
terms that have at least onef i j

1 bond path connecting the two
root vertexes. The sums of the remaining terms in the expan-
sions give the blocking functions.

The percolation threshold corresponds to the existence
of an infinite cluster of particles and is given by the diver-
gence of the mean cluster size14,28

Scluster511r(
i , j

xixjE drhi j
1~r !5SNN

1 ~k50!

[(
i , j

~xixj !
1/2Si j

1~k50!, ~43!

wherehi j
1(r ) is the pair connectedness function~related to

the joint probability of finding a particle of speciesi and a
particle of speciesj at a distancer and that these two par-
ticles are connected! and

Si j
1~k![d i j 1~r ir j !

1/2h̃i j
1~k!. ~44!

Sincehi j
1(r ) is related to the so called direct connected-

ness functionci j
1(r ) through an OZ equation, one can use

Baxter formalism again, introducing a factor functionqi j
1(r ).

If we now defineQ̂1,i j (k)5d i j 22p(r ir j )
1/2q̂i j

1(k), then it
results that

Si j
1~k!5(

m
Q̂1,im

21 ~k!Q̂1, jm
21 ~2k! ~45!

and thus

Scluster5(
m

sm
2 ~0!, ~46!

where

sm~0!5(
i

AxiQ̂1,im
21 ~0!. ~47!

Clearly Q̂1,im
21 (0) diverges to infinity whenuQ̂1(0)u50, and

this relation defines the percolation threshold.
Another interesting and related quantity is the average

coordination number

Z̄54pr(
i , j

xixjE
0

s i j
hi j

1~r !r 2dr. ~48!

A. mMSA approximation

The mMSA closure forci j
1(r ) is

ci j
1~r !5 f i j

1~r !50, r .s i j . ~49!

On the other hand whenr<s i j we haveei j* (r )50 and
f i j

1(r )5ei j (r ), so we must have exactly

hi j
1~r !5ei j* ~r !yi j

1~r !1 f i j
1~r !yi j ~r !

5ei j ~r !yi j ~r !5
Ki j

0

s i j
yi j ~s i j !d~r 2s i j ! r<s i j . ~50!

Within the mMSA we have for the cavity function at
contact7

yi j ~s i j !51 for all i , j . ~51!

Following the same steps of Chiew and Glandt,15,16 we then
find ~see Appendix B for details!

qi j
1~r !5Ki j u~r 2Li j !u~s i j 2r !. ~52!

From which it follows

Q̂1,i j ~0!5d i j 22p~r ir j !
1/2Ki j s j . ~53!

Within cases I, II, and III

Q̂1,i j ~0!5d i j 1ai
1bj

1 , ~54!

ai
1522prAxiYi , ~55!

bj
15AxjYjs j . ~56!

Now from Eq. ~54! follows that Q̂1,i j (0) is a 1-dyadic
form. Using the properties of dyadic matrices~see Appendix
A! we then find
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Q̂1,i j
21 ~0!5

1

uQ̂1~0!u
Ud i j bj

1

ai
1 11a1

•b1
U , ~57!

where

uQ̂1~0!u511a1
•b151212j1,2. ~58!

From Eq.~47! we find

sm~0!5
1

uQ̂1~0!u
FAxm~11a1

•b1!2bm
1(

i
Axiai

1G ,

~59!

and from Eq.~46!

Scluster511
24

j0

j1,1j0,1

1212j1,2
1

144

j0

j2,2j0,1
2

~1212j1,2!
2 . ~60!

The percolation transition occurs when

t55
^s&3

^s3&
h5

1

M1M2
h ~case I!,

h ~case II!,

^s&^s2&

^s3&
h5

1

M2
h ~case III!.

~61!

The threshold is independent ofs at fixedh for case II,
but lowers with increasing size polydispersity in cases I and
III. The curve is simply a straight line, as a consequence of
the mean-field character of the mMSA~C0! closure. The
qualitative result found with cases I and III is, however, in-
teresting. For the average coordination number we find from
Eqs.~48! and ~50!

Z̄54pr(
i , j

xixjKi j s i j

5
24

j0
j1,1j0,1

5H 2
h

t

^s&3

^s3&
~case I!,

2
h

t

^s&^s2&

^s3&
~cases II and III!.

~62!

At the percolation transition we then find

Z̄5H 2 ~case I and III!,

2/M2 ~case II!.
~63!

Using case IVQ̂1 i j (0) turns out to be 3-dyadic; the
percolation transition occurs whenuQ̂1(0)u50, i.e.,

12
h

t
2

s2~417s2!

8~113s212s4! S h

t D 2

1
s6

16~11s2!~112s2!2 S h

t D 3

50. ~64!

The solutionh/t5p(s) such thatp(0)51 is a monoto-
nously decreasing function with

lim
s→`

p~s!50.756 431 ... . ~65!

Then with this case we find that increasing the polydispersity
the nonpercolating region of the phase diagram diminishes.

With case VQ̂1 i j (0) turns out to be 2-dyadic, and the
percolation transition occurs when

t5S ^s&^s2&

^s3&
1A^s&3

^s3&
D h

2
5S 1

M2
1A 1

M1M2
D h

2
,

~66!

which has the physical behavior already found with cases I,
II, and III.

B. C1 approximation with case V

As remarked, in case V we can work out the percolation
threshold equation even within the C1 approximation. From
Eq. ~51! we have exactly

hi j
1~r !5

Ki j
0

s i j
yi j

(C1)~s i j !d~r 2s i j !, r<s i j , ~67!

whereyi j
(C1)(s i j ) is given by Eq.~17!. For the closure con-

dition of the direct connectedness function we find again

ci j
1~r !5 f i j

1~r !1 f i j
1~r !(

m
rmg im j

(1) ~r !

1 f i j* ~r !(
m

rmg i jm
(1)1~r !50, r .s i j , ~68!

since f i j
1(r )5 f i j* (r )50 for r .s i j . To determineqi j

1(r ) we
then follow the same steps as for the mMSA case and we
find

qi j
1~r !5Ki j

0 yi j
(C1)~s i j !u~r 2Li j !u~s i j 2r !. ~69!

When we insertKi j from Eq.~19! into the expression for
Q̂1 i j (0) @see Eq. ~53!# this becomes a 4-dyadic matrix
whose determinant is

uQ̂1~0!u511(
i 51

6

qi~s,h!/t i , ~70!

where the coefficientsqi(s,h) are given in Appendix C.
The percolation threshold is the solution ofuQ̂1(0)u

50. This is an algebraic equation of order 6 int. We can plot
the correct roott~h! for different values of polydispersity, as
reported in Fig. 3. We see that increasing the polydispersity
increases the nonpercolating phase. One can clearly observe
a clear improvement from the mMSA~C0! approximation
although theh→0 limit is still qualitatively different from
the PY one-component case. It would be interesting to study
if the ‘‘true’’ percolation threshold passes through the origin
(h50,t50) ~as occur in the C0 or C1 approximations! or
has a finite limit (h50,t5t0) ~as it occur for monodisperse
fluids in the PY approximation witht051/12). Even if the
Monte Carlo results of Refs. 11 and 12 are inconclusive in
this respect, physically it is plausible to assume that at very
low density the average number of bonds per particle is not
sufficient to support large clusters at all and we would tend
to favor the first scenario.29

For the one-component system the average cluster size is
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Scluster511rh̃1~0!5
1

12r c̃1~0!

5
1

@Q̂1~0!#2
5

1

@12hy(C1)~s!/t#2
.

~71!

The percolation transition occurs whenhy(C1)(s)5t or

h5
2~23t21)t3/2A129t130t2!

1212t130t2 . ~72!

In Fig. 4 we compare our result for the one-component (s
50) system with the PY result of Chiew and Glandt15 and
the Monte Carlo simulation of Miller and Frenkel.11,12

The average coordination number becomes

Z̄52
h

t
y(C1)~s! ~73!

and at the percolation transition we findZ̄52.

VI. PHASE EQUILIBRIUM

Phase equilibrium is another interesting aspect which
can be analyzed in full details within our model. It was
pointed out in Ref. 10 that the equation of state derived from
the energy route for a one-component system of sticky hard
spheres in the mMSA approximation is van der Waals-like.
The same holds true for the system studied with the C1 ap-
proximation. It is worth stressing that the equation of state
derived from the compressibility route cannot yield a van der
Waals loop since from Eq.~25! @](bP)/]r#T.0.30 On the
other hand the equation of state derived from the virial equa-
tion has been shown to diverge for the mMSA
approximation8 and we anticipate that it also diverges for the
C1 approximation. This is the reason why we focus our
analysis on the energy route in the present work.

In this section we will find the binodal curves for the
polydisperse system treated with the mMSA~C0! approxi-
mation and for the one-component system treated with the
C1 approximation. The coexistence problem for a polydis-
perse system is, in general, a much harder task than its one-
component counterpart, since it involves the solution of a
large ~infinite! number of integral nonlinear equations. But
we will see that since our excess free energy is expressed in
terms of a finite number of moments of the size distribution
function ~a similar feature occurs for polydisperse van der
Waals models,18 for polydisperse HS~Ref. 17! and for
Yukawa-like potentials19,20! the coexistence problem can be
simplified and becomes numerically solvable through a
simple Newton-Raphson algorithm@see Eqs.~79!–~81!#. The
necessary formalism to this aim can be found in a recent
review,17 and we will briefly recall it next.

A. From a discrete to a continuous polydisperse
mixture

Consider a mixture made ofp components labeledi
51,...,p, containingN(0) particles and with densityr (0),
which separates, at a certain temperaturet, into m daughter
phases, where each phase, labeleda51,...,m, has a number
of particlesN(a) and densityr (a). Let the molar fraction of
the particles of speciesi of phasea be xi

(a) , a50 corre-
sponding to the parent phase. At equilibrium the following
set of constraints must be fulfilled:~i! volume conservation,
~ii ! conservation of the total number of particles of each spe-
cies, ~iii ! equilibrium condition for the pressures
P(a)(t,r (a),$xi

(a)%), and ~iv! equilibrium condition for the
chemical potentialsm i

(a)(t,r (a),$xi
(a)%). This set of con-

straints form a closed set of equations~see Appendix D for
details! for the (21p)m unknownsr (a), x(a)5N(a)/N(0),
and xi

(a) with i 51,...,p and a51,...,m. Extension to the
polydisperse case with an infinite number of components is
achieved by switching from the discrete index variablei to
the continuous variables using the followingreplacement
rule:

FIG. 3. Dependence of the percolation threshold, as calculated from the C1
approximation using case V~see Sec. V B!, from the polydispersity.

FIG. 4. Binodal curve and percolation threshold@see Eq.~73!#, for a one-
component system, in the C1 approximation. For comparison we also show
the percolation threshold of the Percus-Yevick approximation~Ref. 15!
~which exists fort>1/12), the one from the Monte Carlo simulation of
Miller and Frenkel~Ref. 12! ~circles are the simulation results and the fit,
the dot-dashed line, is only valid fort>0.095), the binodal curve of the
Percus-Yevick approximation~from the energy route! ~Ref. 4!, and the bin-
odal curve from the Monte Carlo simulation of Miller and Frenkel~Ref. 12!
~points with errorbars are the simulation results and the fit, the dot-dashed
line, is merely to guide the eye!.
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xi→F~s!ds, ~74!

whereF(s)ds is the fraction of particles with diameter in
the interval (s,s1ds). The functionF(s) will be called
molar fraction density functionor more simply size distribu-
tion function. Note that, due to this replacement rule, we also
have

P(a)~t,r (a),$xi
(a)%!→P(a)~t,r (a);@F (a)# !, ~75!

m i
(a)~t,r (a),$xi

(a)%!→m (a)~s,t,r (a);@F (a)# !, ~76!

i.e., the thermodynamic quantities become functionals of the
size distribution function and the equilibrium conditions~ii !–
~iv! has to be satisfied for all values of the continuous vari-
ables. The phase coexistence problem that now consists in
solving the constraints~i!–~iv! for the unknownsr (a), x(a),
andF (a)(s) for a51,...,m, turns out to be a rather formi-
dable task hardly solvable from a numerical point of view.
Fortunately, as outlined in the following section, for our
model a remarkable simplification occurs.

B. Truncatable excess free energy

As is described in the following section, the excess free
energy of our system istruncatable: it is only a function of
the three momentsj i , i 51,2,3 of the size distribution func-
tion @see Eq.~86! for cases I, II, III, IV, and V treated with
mMSA, and Eq.~100! for case V treated with C1#. So we
have the following simplification

P(a)~t,r (a);@F (a)# !→P(a)~t,r (a);$j i
(a)%!, ~77!

m (a)~s,t,r (a);@F (a)# !→m (a)~s,t,r (a);$j i
(a)%!, ~78!

where $j i
(a)% is a short-hand notation forj1

(a) ,j2
(a) ,j3

(a) . It
turns out that the two-phase (m52) coexistence problem,
the one in which we are interested~we are thus concentrating
on the high temperature portion of the phase diagram!, re-
duces to the solution of the following eight equations in the
eight unknownsr (1), r (2), $j i

(1)%, and$j i
(2)%,

j i
(a)5

p

6
r (a)E Q(a)~s,t,r (0),r (1),r (2);$j i

(1)%,$j i
(2)%!

3F (0)~s!s ids, i 51,2,3 a51,2, ~79!

15E Q(a)~s,t,r (0),r (1),r (2);$j i
(1)%,$j i

(2)%!F (0)~s!ds,

a51 or 2, ~80!

P(1)~t,r (1);$j i
(1)%!5P(2)~t,r (2);$j i

(2)%!, ~81!

with

r (a)Q(a)5r (0)
~r (1)2r (2)!~12d1a1d1aebDmexc

!

~r (1)2r (0)!1~r (0)2r (2)!ebDmexc , ~82!

and

Dmexc5mexc(2)~s,t,r (2);@F (2)# !

2mexc(1)~s,t,r (1);@F (1)# !, ~83!

where we indicate with the superscript exc the excess part
~over the ideal! of the chemical potential. For a complete
derivation of Eqs.~79!–~81! see Appendix D.

C. Thermodynamic properties

In order to obtain the equation of state of our model Eq.
~1! from the energy route, one exploits the following exact
result ~if t i j 5t/e i j with the e i j independent oft !;

]~bAexc/N!

]t
52pr(

i , j
xixjE ]@bf i j ~r !#

]t
gi j ~r !r 2dr

52pr(
i , j

xixjE
s i j

Ri j 1

t
ei j ~r !yi j ~r !r 2dr

52pr(
i , j

xixj

1

t Es i j

Ri j 1

12t i j

Ri j

Ri j 2s i j
yi j ~r !r 2dr.

Upon taking the sticky limit we find

]~bAexc/N!

]t
5

h

^s3&

1

t (
i , j

xixj

1

t i j
s i j

3 yi j ~s i j !. ~84!

1. mMSA approximation

Within the mMSA approximation the partial cavity func-
tions at contact are all equal to 1 so from Eq.~84!, after
integration overt from t5` ~hard sphere case!, we find

b~ASHS
exc 2AHS

exc!

N
j0

5

¦

2
1

t

j1
3

j0
~case I!,

2
1

t
j2j1 ~cases II and III!,

2
1

t

1

4
~3j1j21j0j3! ~case IV!,

2
1

t

1

2 S j1j21
j1

3

j0
D ~case V!.

~85!

The pressure can be found, frombP/r5h](bA/N)/]h

p

6
b@PSHS~t,r;$j i%!2PHS~t,r;$j i%!#

5
b~ASHS

exc 2AHS
exc!

N
j0 , ~86!

where forPHS we use an equation due to Boublı´k, Mansoori,
Carnahan, Starling, and Leland~Refs. 31 and 32! which re-
duces to the Carnahan-Starling one whens50,
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p

6
bPHS~t,r;$j i%!

5ZHSj05
j0

12j3
13

j1j2

~12j3!2 13
j2

3

~12j3!3

2
j3j2

3

~12j3!3 5j0H 1

12h
1

3h

~12h!2

1

M2

1F 3h2

~12h!3 2
h3

~12h!3G M1

M2
2 J . ~87!

The excess free energy of the polydisperse hard sphere
system is obtained integrating (ZHS21)/h over h, from h
50, and recalling that the excess free energy is zero when
h50. We then find33

bAHS
exc

N
5

h

~12h!2

M1

M2
2 1

3h

12h

1

M2
1FM1

M2
2 21G ln~12h!

5
j2

3

j0j3~12j3!2 13
j1j2

j0~12j3!

1S j2
3

j0j3
2 21D ln~12j3!. ~88!

Note that bothASHS
exc andAHS

exc depend upon only a finite num-
ber of momentsjn , and this is the crucial feature for the
feasibility of the phase equilibrium, as remarked.

For the chemical potentialbm i5](bA/V)/]r i we find
after some algebra

bmexc~s,t,r;$j i%!

5~mHS
[0]1Dm [0] !1~mHS

[1]1Dm [1] !s

1~mHS
[2]1Dm [2] !s21~mHS

[3]1Dm [3] !s3, ~89!

where

mHS
[0]52 ln~12j3!, ~90!

mHS
[1]53j2 /~12j3!, ~91!

mHS
[2]5S 3

j2
2

j3
2D ln~12j3!

13j1 /~12j3!1S 3
j2

2

j3
D Y (12j3)2, ~92!

mHS
[3]5S 22

j2
3

j3
3D ln~12j3!1S j02

j2
3

j3
2D Y ~12j3!

1S 3j1j22
j2

3

j3
2D Y ~12j3!21S 2

j2
3

j3
D Y ~12j3!3.

~93!

and

Dm [0]55
1

t

j1
3

j0
2 (case I),

0 (cases II and III),

2
1

t

j3

4
(case IV),

1

t

j1
3

2j0
2 (case V),

~94!

Dm [1]5

¦

2
1

t

3j1
2

j0
~case I!,

2
1

t
j2 ~cases II and III!,

2
1

t

3j2

4
~case IV!,

2
1

t

1

2 S j21
3j1

2

j0
D ~case V!,

~95!

Dm [2]55
0 ~case I!,

2
1

t
j1 ~cases II and III!,

2
1

t

3j1

4
~case IV!,

2
1

t

j1

2
~case V!,

~96!

Dm [3]55
0 ~case I!,

0 ~cases II and III!,

2
1

t

j0

4
~case IV!,

0 ~case V!.

~97!

It is noteworthy that if we retain in the expression~87!
for PHS, only the first term, then our case IV coincides with
the van der Waals model of Bellier-Castellaet al.18 with
n51, l 50, upon identifying 4t with the temperature used
by these authors.

2. C1 approximation with case V

In analogy with what we have done before, we now
consider the C1 approximation for case V. Using Eq.~17!
into Eq. ~84!

]~bAexc/N!

]t
512

h

t Fk0

^s&

^s3&
1k1S ^s2&1^s&2

^s3& D
1k2

^s2&^s&

^s3& G . ~98!

Integrating fromt5` we find
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b~ASHS
exc 2AHS

exc!

N

52
h

2

1

t S ^s&3

^s3&
1

^s&^s2&

^s3& D1
h2

2 F2
1

t S ^s&^s2&

^s3&

1
^s&3

^s3&
13

^s&2^s2&2

^s3&2 D1
1

t2 S 1

4

^s&2^s2&2

^s3&2

1
3

4

^s&4^s2&

^s3&2 D2
1

t3 S 1

72

^s&6

^s3&2 1
1

24

^s&4^s2&

^s3&2 D G .
~99!

For this case we limit ourselves to study the coexistence
problem for the one-component system. In Table I we com-
pare the critical parameters obtained through the energy
route for the mMSA, C1, PY approximations and MC simu-
lation, for the one-component system.

Note that, as already pointed out in Ref. 8, a density
expansion ofy(s) within the PY approximation gives to
zero order they(s) of the mMSA approximation and to first
order they(s) of the C1 approximation~as should be ex-
pected comparing the density expansions of the closures cor-
responding to these approximations!. So at low densities
ZSHS from mMSA, C1, and PY should be comparable. From
Table I we see that the true critical parameters are between
the PY and the C1 ones.

In Fig. 4 we depict the binodal curve obtained from the
C1 approximation for the one-component system and we
compare it with the PY binodal curve~obtained from the
energy route! Ref. 4 and the one resulting from the MC
simulation of Miller and Frenkel.12 Remarkably, the gas-
liquid coexistence curve predicted by C1 lies closer to the
MC data than the one predicted by PY on the gas branch and
further on the liquid branch.

D. Numerical results

In this section we describe the numerical results obtained
from the solution of Eqs.~79!–~81! for the SHS in the
mMSA, through a Newton-Raphson algorithm.

We first determined thecloud and shadowcurves by
solving Eqs.~79!–~81! for the particular case in which we set
r (0)5r (1) so thatF (1)(s)5F (0)(s). The cloud curverc(t)
is such that the solutionsr (1)(t), r (2)(t) of the full coexist-
ence problem given by Eqs.~79!–~81!, for a fixedr (0) ~the
coexistence or binodal curves!, have the property that for a
certain temperaturet0 , r (1)(t0)5rc(t0)5r (0), i.e, the den-
sity of phase 1 ends on the cloud curve. The shadow curve is
the set of pointsrs(t) in equilibrium with the corresponding

cloud curve, i.e.,r (2)(t0)5rs(t0), the density of phase 2
ends on the shadow curve. The interception between the
cloud and the corresponding shadow curve gives the critical
point (tcr ,rcr): when r (0)5rcr the two solutionsr (1)(t),
r (2)(t) meet at the critical point.

In order to find the cloud and shadow curves we choose
as the parent distributionF (0)(s) a Schulz distribution with
^s&51, and the initial conditions, for the Newton-Raphson
algorithm, in the high temperaturet* and low polydispersity
s* region. Our starting conditions for the solution are

r (a)5roc
(a) , ~100!

j1
(a)5

p

6
r (a), ~101!

j2
(a)5

p

6
r (a)~11s

*
2 !, ~102!

j3
(a)5

p

6
r (a)~11s

*
2 !~112s

*
2 !, ~103!

for a51,2, whereroc
(1) androc

(2) are the coexistence densities
at a temperaturet* for the one-component system. Once the
cloud and shadow curves are determined we proceed to find
the coexistence curves for a given mother density.

In Fig. 5 we depict the cloud and shadow curves ob-
tained with our case I for two representative values of poly-
dispersity,s50.1 ands50.3. For comparison the coexist-
ence curve of the one-component system (s50) is also
reported. As polydispersity increases, the critical point
moves to lower densities and lower temperatures (tcr

.0.094, rcr.0.249 at s50, tcr.0.093, rcr.0.24 at s
50.1, andtcr.0.085,rcr.0.197 ats50.3). Let us now fix
s50.3, a value corresponding to a moderate polydispersity.
Again in Fig. 5 we depict three coexistence curves upon
changing the mother densityr (0)50.08, r (0)50.25, and
r (0)50.197.rcr .

All these curves closely resemble the corresponding
ones obtained for the polydisperse van der Waals model,18 in

TABLE I. For the one-component system, we compare the critical param-
eters obtained from the mMSA, C1, and PY~Ref. 4! approximations with
the ones from the Monte Carlo simulation of Miller and Frenkel~Ref. 12!.

tc hc (ZSHS)c

mMSA 0.0943 0.13 0.36
C1 0.1043 0.14 0.37
PY 0.1185 0.32 0.32
MC 0.1133 0.27 ---

FIG. 5. Cloud and shadow curves for case I in the mMSA at two values of
polydispersity:s50.1 ands50.3. For the cases50.3 we also show three
coexistence curves~continuous lines! obtained settingr (0)50.08, r (0)

50.25, andr (0)50.197.rcr . For comparison the binodal of the monodis-
perse (s50) system has also been included.
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agreement with previous results. In Fig. 6 we show how the
two daughter distribution functions~at s50.3 and r (0)

5rcr) differ from the parent Schulz distribution~a process
usually calledfractionation!, for two different values of tem-
peraturet50.084 andt50.078.

Next we consider differences in the critical behavior
with respect to changement in the case. In Fig. 7 we show
the cloud and shadow curves obtained using cases I, IV, and
V at s50.3. While for cases I and V the critical point is
displaced at lower temperature and lower density respect to
the monodisperse system, the critical point of case IV is
displaced at higher temperatures and lower density. The
cloud curves of cases II and III have a low density branch
that does not meet the high density one as soon ass.0;
moreover, the cloud curve does not meet the corresponding
shadow curve, so there is no critical point. We are not aware
of similar features in other polydisperse models, although
this is of course to be expected in other cases as well.

VII. CONCLUSIONS

In this work we have performed an extensive analysis of
the phase diagram for Baxter SHS model in the presence of
polydispersity. In spite of its simplicity, this model has been
proven to be extremely useful in the theoretical characteriza-

tion of sterically stabilized colloids. These systems are, how-
ever, affected by intrinsic polydispersity in some of their
physical properties~size, species, etc.! and hence the effect
of polydispersity on the corresponding theoretical models
cannot be overlooked and is then a rather interesting point to
address. As only formal manipulations5 can be carried out for
the multicomponent Baxter SHS model within the PY ap-
proximation, we have resorted to a simpler closure mMSA to
which the PY closure reduces in the limit of zero density and
that was recently shown8 to reproduce rather precisely many
of the interesting features of its PY counterpart. Our analysis
has also been inspired by recent results by Miller and
Frankel12 who showed that Baxter SHS model coupled with
PY closure reproduced fairly well their MC data in the one-
component case. We have studied the effect of polydispersity
on phase stability boundaries, the percolation phase transi-
tion, and the gas-liquid phase transition. We have considered
five different cases of polydispersity. This is because there is
no general agreement on the way in which adhesion forces
are depending on the size of particles. Cases I and II had
already been discussed in previous work by us,9 case III is a
variant of case I, whereas a case similar to case IV had been
employed by Tutschka and Kahl.13 Finally case V has been
specifically devised to cope with approximation C1. In spite
of the apparent redundancy of all these subcases, we believe
that each of these examples has a reasonable interest on its
own, and hence we have included them all in our discussion.

We studied the instability boundaries and the two-phase
coexistence problem of polydisperse SHS system in the
mMSA ~C0!. The next level of approximation C1 would still
be feasible, but significantly more lengthly. We have laid
down the necessary formalism in Secs. III and VI.C.2, and
tested its effect on the one-component case, by comparing
the results against the PY approximation and MC data. We
derived the percolation threshold of the polydisperse system
both within mMSA~C0! closure~for all five cases! and in the
C1 approximation~using case V!.

We found that the effect of polydispersity on the stability
and phase boundaries slightly depends upon the chosen case,
but there are general features shared by all of them: polydis-

FIG. 6. Evolution of the size distribution of the coexisting phasesF (1)(s)
andF (2)(s), with temperature along the critical binodal of Fig. 5 (s50.3,
r (0)50.197.rcr). For comparison also the parent Schulz distribution is
shown~continuous line!.

FIG. 7. Cloud and shadow curves for cases I, IV, and V in the mMSA at
s50.3. For comparison the binodal of the monodisperse (s50) system has
also been included~continuous line!.
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persity renders the mixture more stable with respect to con-
centration fluctuations~in the small density region, see Fig.
2! with the exception of case II for which the stability bound-
ary is independent from the polydispersity; Eqs.~61!, ~64!,
and ~66! ~in the mMSA!, and Eq.~70! ~in the C1!, describe
its effect on the percolation threshold~see Figs. 4 and 3!.
Polydispersity increases the region of the phase diagram
where we have a nonpercolating phase, with the exception of
case IV, for which the opposite trend is observed, and of case
II for which the percolation threshold is independent from
the polydispersity; polydispersity reduces the region of the
phase diagram where we have a gas-liquid coexistence for
cases I and V, while the opposite trend is observed for case
IV ~see Fig. 7!. For cases II and III we obtained cloud curves
with a gap at high temperature, moreover the cloud curve
does not meet the corresponding shadow curve, so there is no
critical point, as soon as polydispersity is introduced.

In conclusion, the typical effect of polydispersity is to
reduce the size of the unstable region, the percolating region,
and the two-phase region of the phase diagram, although
exceptions to this general rule have been observed for cases
II, III, and IV.

For the one-component case we also compared the per-
colation threshold and binodal curve obtained from the C1
approximation with the results from the PY
approximation4,15 and the results from the Monte Carlo
simulation of Miller and Frenkel12 ~see Fig. 4!. The percola-
tion threshold from C1 appears to approach that from PY, but
is still significantly different from the results from the Monte
Carlo simulation~the zero density limit, on the other hand,
appears to be more physically sound than the PY one, and
this feature remains to be elucidated!. The gas-liquid coex-
istence curve predicted by C1 is better than the one given by
PY on the gas branch and worse on the liquid branch. Table
I shows how the true~from the Monte Carlo simulation of
Miller and Frenkel12! critical temperature and density for the
gas-liquid coexistence should lay between the ones predicted
by PY and the ones predicted by C1.

Future developments of the present work can be envis-
aged along the following lines:~i! as pointed out in
Ref. 24 on definingcG5)mxm /SCC(0) and c Â5)mxm /
@(rkBTKT)SCC(0)#, the conditioncG.0 is necessary but
not sufficient for the material stability of the system and the
conditionc Â.0 is necessary but not sufficient for the mixed
material and mechanical stability. It could happen that those
two conditions are satisfied but the system is nonetheless
unstable as occurs, for example, in the binary mixture stud-

ied by Chen and Forstmann.34 Even though a characteriza-
tion of the instability boundary in the spirit of Chen and
Forstmann seems unattainable for a polydisperse system, it
would be desirable, in the future, a more precise location of
the instability boundaries. Moreover the way we found the
instability boundaries for the polydisperse system was to
start from the instability condition valid for a discrete mix-
ture and take the limit of a continuous mixture on the insta-
bility boundaries of the discrete mixture. It would be inter-
esting to compare our analysis with the one given by Bellier-
Castella et al. ~see Sec. II C in Ref. 18! who take the
continuous limit from the outset;~ii ! all the percolation
thresholds that we have calculated have a low density branch
that enters the gas-liquid coexistence region. The same fea-
ture is observed for the one-component system studied
through Monte Carlo simulation.11,12 While it is clear that
continuum percolation is, strictly speaking, not a thermody-
namic phase transition, one could expect, from a ‘‘dynami-
cal’’ point of view, an interference between the formation of
infinite clusters of particles and phase separation, and a clari-
fication of this point would have interesting experimental
applications; and~iii ! the polydisperse system is expected to
display, in the low temperature region, other critical points
signaling the onset ofm.2 phase coexistence,18 and it
would be interesting to study their evolution with polydisper-
sity for our system.
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APPENDIX A: DETERMINANT AND INVERSE
OF A DYADIC MATRIX

Given then-dyadic matrix of Eq.~28!, its determinant is

uQ̂u5U11A(1)
•B(1) A(1)

•B(2)
¯ A(1)

•B(n)

A(2)
•B(1) 11A(2)

•B(2)
¯ A(2)

•B(n)

] ] ] ]

A(n)
•B(1) A(n)

•B(2)
¯ 11A(n)

•B(n)

U .

~A1!

Furthermore, any dyadic matrixQ̂ admits analytic inverse
for any numberp of components, with elements given by

Q̂i j
215

1

uQ̂uU d i j Bj
(1) Bj

(2)
¯ Bj

(n)

Ai
(1) 11A(1)

•B(1) A(1)
•B(2)

¯ A(1)
•B(n)

Ai
(2) A(2)

•B(1) 11A(2)
•B(2)

¯ A(2)
•B(n)

] ] ] ] ]

Ai
(n) A(n)

•B(1) A(n)
•B(2)

¯ 11A(n)
•B(n)

U . ~A2!
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APPENDIX B: DERIVATION OF EQ. „52…

The closure condition~49! justify the usual generalized
Wiener-Hopf factorization35

rci j
1~ ur u!52qi j

18~r !12p(
m

rmE
Lmi

`

dtqmi
1 ~ t !qm j

18~r 1t !,

~B1!

rhi j
1~ ur u!52qi j

18~r !12p(
m

rmE
Lim

`

dtqim
1 ~ t !~r 2t !

3hm j
1 ~ ur 2tu!, ~B2!

wherer .Li j , the prime denotes differentiation, andqi j
1(r )

are real functions with support on@Li j ,s i j # and zero every-
where else.

Let us determineqi j
1(r ). Using the exact condition~50!

in Eq. ~B2! we find for Li j ,r<s i j

qi j
18~r !52Ki j d~ ur u2s i j !12p(

m
rmE

Lim

s im
dtqim

1 ~ t !

3~r 2t !
Km j

sm j
d~ ur 2tu2sm j!. ~B3!

The second term on the right end side is equal to
2p(mrmqim

1 (r 2sm j)Km j which is zero whenr ,s i j . So
we simply have

qi j
18~r !52Ki j d~ ur u2s i j !, Li j ,r<s i j . ~B4!

Integrating this equation gives Eq.~52!.

APPENDIX C: COEFFICIENTS OF EQ. „70…

The coefficients in Eq.~70! are as follows:

q1~s,h!52
h~215h!~113s212s4!3

2~11s2!3~112s2!4 , ~C1!

q2~s,h!52
h2$241@h~21h!25#s2%~113s212s4!2

4~11s2!3~112s2!4 ,

~C2!

q3~s,h!5
h2$221@6h~11h!25#s222s4%

24~11s2!~112s2!3 , ~C3!

q4~s,h!52
h3s2@215h1~417h!s2#

96~11s2!2~112s2!4 , ~C4!

q5~s,h!50, ~C5!

q6~s,h!5
h4s4

2304~11s2!3~112s2!4 . ~C6!

APPENDIX D: PHASE COEXISTENCE CONDITIONS

In this Appendix we give a complete derivation of Eqs.
~79!–~81! in the main text.

Consider ap-component mixture. Each speciesi has
number densityr i

(0)5Ni
(0)/V(0), whereNi

(0) is the number of
particles of typei andV(0) the volume of the system.

We assume that at a certain temperaturet the system
separates intom daughter phases, where each phasea
51,...,m is characterized by a volumeV(a) and a number of
particles of speciesi , Ni

(a) .
At equilibrium the following set of constraints must be

fulfilled.

~1! Volume conservation

V(0)5 (
a51

m

V(a); ~D1!

~2! Conservation of the total number of particles of each
species

Ni
(0)5 (

a51

m

Ni
(a) , i 51,...,p, ~D2!

~3! equilibrium condition for the pressures

P(a)~t,V(a),$Ni
(a)%!5P(b)~t,V(b),$Ni

(b)%!; ~D3!

~4! equilibrium condition for the chemical potentials

m i
(a)~t,V(a),$Ni

(a)%!5m i
(b)~t,V(b),$Ni

(b)%!,

i 51,...,p, ~D4!

where$Ni
a% is a short-hand notation forN1

a ,...,Np
a .

It is convenient to use the following set of variables:t,
r (a)5N(a)/V(a), xi

(a)5Ni
(a)/N(a), i 51,...,p with N(a)

5( iNi
(a) . Introducingx(a)5N(a)/N(0) Eqs. ~D1!–~D4! can

be rewritten as follows:

1

r (0) 5(
a

1

r (a) x(a), ~D5!

xi
(0)5(

a
xi

(a)x(a), ~D6!

P(a)~t,r (a),$xi
(a)%!5P(b)~t,r (b),$xi

(b)%!, ~D7!

m i
(a)~t,r (a),$xi

(a)%!5m i
(b)~t,r (b),$xi

(b)%!, ~D8!

with the normalization condition

(
i

xi
(a)51, a51,...,m. ~D9!

Equations~D5!–~D9! form a set of closed equations for the
(21p)m unknownsr (a), x(a), xi

(a) with i 51,...,p and a
51,...,m. Note that whenm5p11 the densities of the vari-
ous phasesr (a) will be independent ofr (0), since relations
~D7!, ~D8!, and ~D9! form a closed set of equations for the
unknownsr (a), xi

(a) .
In the continuous polydisperse limit (p→`) we have to

take into account the substitution rule~74!. Then the thermo-
dynamic quantities will be rewritten as in Eqs.~75! and~76!,
and Eqs.~D5!–~D8! become

1

r (0) 5(
a

1

r (a) x(a), ~D10!

F (0)~s!5(
a

F (a)~s!x(a), ~D11!
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P(a)~t,r (a);@F (a)# !5P(b)~t,r (b);@F (b)# !, ~D12!

m (a)~s,t,r (a);@F (a)# !5m (b)~s,t,r (b);@F (b)# !, ~D13!

with the normalization condition

E F (a)~s!ds51, a51,...,m. ~D14!

Integrating Eq.~D11! over s and using Eq.~D14! we find

(
a

x(a)51. ~D15!

The set of Eqs.~D10!–~D14! forms a closed set of equations
for the unknownsr (a), x(a), andF (a)(s) with a51,...,m.
Note that, due to the substitution rule~74!, sum overi be-
comes integration overs and thermodynamic quantities be-
come functionals of the distribution function. We have indi-
cated such dependence with square brackets.

Two-phase coexistence

Let us now specialize ourselves to the two-phase (m
52) coexistence. We are thus concentrating on the high tem-
perature portion of the phase diagram, since coexistence with
m.2 ~Gibbs phase rule does not restrict the value ofm in a
system of infinitely many species! is expected to occur at
low temperatures. From Eqs.~D15! and ~D10! we find

x(1)5
r (0)2r (2)

r (1)2r (2)

r (1)

r (0) , ~D16!

x(2)5
r (1)2r (0)

r (1)2r (2)

r (2)

r (0) . ~D17!

Note thatx(1) and x(2) must be positive. So ifr (1),r (2),
then r (0) must lie betweenr (1) and r (2), if r (2),r (1), it
must lie betweenr (2) and r (1). Substituting these expres-
sions in Eq.~D11! we find

r (2)F (2)5r (0)F (0)
r (1)2r (2)

r (1)2r (0) 1r (1)F (1)
r (0)2r (2)

r (0)2r (1) .

~D18!

Next we divide the chemical potentials in their ideal and
excess componentsm5m id1mexc where

bm id(a)~s,t,r (a);@F (a)# !5 ln@L3r (a)F (a)~s!#, ~D19!

with L being the de Broglie thermal wavelength. Now Eq.
~D13! becomes

F (1)~s!5F (2)~s!
r (2)

r (1) ebDmexc
, ~D20!

Dmexc5mexc(2)~s,t,r (2);@F (2)# !

2mexc(1)~s,t,r (1);@F (1)# !. ~D21!

From Eqs.~D18! and ~D20! we find

F (a)~s!5F (0)~s!Q(a)~s,t,r (0),r (1),r (2);@F (1)#,@F (2)# !,

~D22!
where theQ(a) are defined by Eq.~82!.

Formally Eqs. ~D18!, ~D20!, and ~D12! with a51,
b52, and~D14! with a51 or 2, form a closed set of equa-
tions for the unknownsr (1), r (2), F (1)(s), andF (2)(s). In
our case the free energy of the system@cases I, II, III, IV, and
V treated with mMSA, see Eq.~85!, or case V treated with
C1, see Eq.~99!# is truncatable: it is only a function of the
three momentsj i , i 51,2,3 of the size distribution function
F. So the problem is mapped into the solution of the eight
Eqs.~79!–~81! in the eight unknownsr (1), r (2), j1

(1) , j2
(1) ,

j3
(1) , j1

(2) , j2
(2) , andj3

(2) .
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