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Stability boundaries, percolation threshold, and two-phase coexistence
for polydisperse fluids of adhesive colloidal particles
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We study the polydisperse Baxter model of sticky hard sphé€®tS in the modified mean
spherical approximatiofmMSA). This closure is known to be the zero-order approximation CO of
the Percus-Yevick closure in a density expansion. The simplicity of the closure allows a full
analytical study of the model. In particular we study stability boundaries, the percolation threshold,
and the gas-liquid coexistence curves. Various possible subcases of the model are treated in details.
Although the detailed behavior depends upon the particularly chosen case, we find that, in general,
polydispersity inhibits instabilities, increases the extent of the nonpercolating phase, and diminishes
the size of the gas-liquid coexistence region. We also consider the first-order improvement of the
mMMSA (CO) closure (C1) and compare the percolation and gas-liquid boundaries for the
one-component system with recent Monte Carlo simulations. Our results provide a qualitative
understanding of the effect of polydispersity on SHS models and are expected to shed new light on
the applicability of SHS models for colloidal mixtures. 005 American Institute of Physics.
[DOI: 10.1063/1.1831275

I. INTRODUCTION simpler approximatiofimodified mean spherical approxima-
tion (MMSA) closurg having the advantage that also the
In sterically stabilized colloidal mixtures, particles are multicomponent case could be worked out analyticafy.
coated with polymer brushes to prevent irreversible floccufyrther analysis and comparison with both Monte Carlo
lation due to van der Waals attractibrif the solvent is a (MC) and PY resuls'?in the one-component case, have
moderate one, a lowering of the temperature yields verghown that the mMSA closure for Baxter model is a reliable
strong attraction with a range much less than the typical colpne up to experimentally significant densities. The price to
loidal size. In microemulsions of polydispersed sphe_rlcal Wapay for this simplification is that only the energy equation of
ter droplets each coated by a monolayer of sodium di-2giate gives rise to a critical behavior, the other two routes

ethylhexylsulfosuccinate dispersed in a continuum of oil, theyielding either a noncritical behavidgcompressibility, or a
droplets interact with each other via a hard core plus a Shor&iverging equation of statévirial).

range attractive potential, the strength of which increases
with temperaturé.For these systems, a very useful theoreti-
cal model is the sticky hard sphet@HS model proposed by

In this work we pursue this investigation by studying the
multicomponent version of the model proposed in Ref. 8,
and analyzing various consequences. We first solve the mul-

Baxter I(_)ng4t|me ago for atomic liquids. 'P the or_|g|naI_Bax- ticomponent version of Baxter model within the mMSA clo-
ter solutiori* the one-component Ornstein-Zerni@2) in- L .
sure, and show that the solution is equivalent to the one

tegr_al equation was Qnalytlcally solved .W'thm the Percus'derived in Ref. 9 for a companion SHS model. The solution,
Yevick (PY) approximation. Successive extension to

mixtures® however, proved to be a formidable task in view derived in terms of an auxiliary function called Baxter factor

of the fact that a largginfinite (Ref. 6] number of coupled correlation, turns out to be formally similar to that derived
guadratic equations ought to be solved numerically in orde}“”th the PY chsure. However, and. this is the Crux of the
to have a complete understanding of both thermodynamic@atter’ the matrix function representing the stickiness param-

and structure of the model. This is the reason why, to the be&ters is unconstrained, unlike the PY counterpart. In order to
of our knowledge, only binary mixtures have been explicitly make further progress and derive the multicomponent energy

discussed so far in this framewctdvioreover it has been €duation of state, a further assumption is necessary on the
proven by Stell that sticky spheres of equal diameter in thematr_ix representing the stickiness parameters. A_s_dis_cussed
Baxter limit are not thermodynamically stable and size poly-Previously(see Ref. 9 for detailsa remarkable simplification
dispersity can be expected to restore thermodynami€ccurs when the general element of this matrix has the form
stability. of a sum of dyadsi.e., it is dyadig. In these cases the nec-
Motivated by this scenario, it was recently propdsad —€ssary matrix inversion can be carried out analytically and all
measurable quantities can then be computed. Physically, this
reduction to a dyadic form amounts to assume a relation

aE|ectronic mail: rfantoni@unive.it

bElectronic mail: gazzillo@unive.it among polydispersity in size and polydispersity in stickiness,
®Electronic mail: achille@unive.it that is on the adhesion forces. In addition to the two cases
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proposed in Ref. 9denoted as cases | and Il in the follow- o, G;
ing) and that proposed in Ref. 18ase IV}, we shall consider - — v

two further cases. The first ongase Il) is a physically 41
surface area 4 70 G;

motivated variant of case |, whereas the second(oase

has its main justification in the simplifying features occur-
ring when one attempts to go beyond the mMSA closure
with a density perturbative approaéto first order this will

be called C1, as in Ref. 8, for reasons which will become
apparent in the rest of the pajper

The main results of our analysis are the following. We
derive the instability curves in three of the considered cases
(cases I-Il} within the mMSA approximation and analyze
the effect of polydispersity in some detail. In order to test the sphere of species i
reliability of the mMSA approximation, we also consider the FIG. 1. Schematic diagram showing the area of the contact surface between
first-order correction C1 in the one-component case an@ Particle of speciesand a particle of specigs
compare with the PY result.

Next we consider the effect of polydispersity on the per-and define the various cases of polydispersion models taken
colation threshold. This is an interesting phenomenon on itsinder exam; in Sec. 1l we give the solution for Baxter factor
own right and has attracted considerable attentiorforrelation function in the C1 approximation and show how
recently'>?14~18peing a paradigmatic example of floccula- case V is particularly suitable to study the polydisperse sys-
tion instability. In particular, recent Monte Carlo tem analytically; in Sec. IV we analytically derive the insta-
simulation$''? on monodisperséone-componentspheres  bility boundaries; in Sec. V we find analytically the percola-
with sticky adhesion have clearly tested the performance ofion thresholds; in Sec. VI we derive numerically the two-
analytical calculations based on the PY approximatiofi. Phase coexistence curves; in Sec. VIl we lay down our
We then study the percolation transition as a function ofconclusions and further developments.
polydispersity in all above mentioned cases within mMSA.
Again we can discriminate the effect of polydispersity on the'l- BAXTER MODEL AND MODIFIED MSA SOLUTION
percolation line, and also compare it with the first-order cor-  In Baxter model of SHS1, one starts adding to the HS
rection C1, the PY approximation, and MC simulations in thepotential a square-well tail with
one-component case. 1 R.

Next we consider phase equilibrium. A major obstacle to ¢ (r)=—kgT In(— —
the analysis of phase transition in polydisperse systems is 127; Rij = o;;
posed by the fact that, in principle, one has to deal with avhereo;;=(o;+ ¢})/2 (o being the HS diameter of species
large (infinite) number of integral nonlinear equations corre-j), Ri;—oj; denotes the well widthkg is Boltzmann con-
sponding to the coexistence conditions among varioustant, T the temperature, and the dimensionless parameter
phases. In this model, however, as it also occurs in othef-ﬁlzo measures the strength of surface adhesiveness or
simpler models such as hard sphefe$),'” van der Waals “stickiness” between particles of speciesandj (7jj is also
fluids™ and in more complex cases such as factorizable hardan unspecified increasing function @f. The sticky limit
sphere Yukawa potential§° the task can be carried out in corresponds to takingR;;} —{o7;}.
full detail in view of the fact that théexces$ free energy The Baxter form of the OZ integral equations for this
depends upon only a finite number of moments of the sizenodel admits a very simple analytic solution if one uses the
distribution function. In the particular case of two-phase co-following mMSA:
existence, we derive the cloud and shadow curves of all
cases in the mMSA approximation. We compare the results
with those derived earlier for a polydisperse van der Waalsvherec;;(r) andf;;(r) =exd —B¢;(r)]—1 are the direct cor-
fluid,'” and discuss analogies and differences in this respectelation function and the Mayer function, respectivély
Finally we compare the results of the mMSA one-component= (kgT) ~1]. This can be easily inferred by using the formal-
case with the first-order correction, the PY approximation,sm introduced in Ref. 8. As pointed out in that reference, the
and the results of MC simulations. mMMSA closure can be reckoned as a zero-order approxima-

The plan of the paper is as follows. In Sec. Il we definetion in a perturbative expansion, and hence it will also be
the multicomponent SHS model, give the solution for Baxterdenoted as CO henceforth. In terms of Baxter factor correla-
factor correlation function in the mMSACO) approximation,  tion functionsg;;(r), its extension to mixtures reads

sphere of species j

>, ojsr<Ry, (1)

Cij(r):fij(r) for r?o-ij, (2)

%ai(r—o-ij)2+(bi+aio'ij)(r—o'ij)+Ki]- , Lij:(O'i_O'j)/2$r$O'ij ,
gij(r)= 3)
0, elsewhere,
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1 3&o, 12 1 o The physical interpretation of these choices is the following.
A=yt a7z T b= NI (4 In case | the stickiness is assumed to be proportional to the
surface contact area of two colloidal particles having average

Tl TP size(o), whereas in case Il the adhesion of each particle is
§n=g_z pio}, (=g > pmomKim, A=1-¢;, (5  linearly related to its size. Case Il finally, is a variant of
=t m- case | where one considers an average stickiness rather than
with p being the number of componengs,the number den- the stickiness of an average particle.
sity of specied, and In all these cases the{™** matrix can be factorized as

KMSA= v,y (12)

with Y; having dimensions of lengthY;=(\/127) (o),
Yi=(J127) "t oy, andY;=(/127) ! (0?2 in cases |, Il
and lIl, respectively. Note that cases | and Il have already
been exploited by us in previous wotk.

We also consider a case similar to that proposed by Tut-
schka and Kaff (henceforth denoted as case) IV

1
(MMSA) _ 2_ 1,0
ij —_127”_ i =Kij - (6)
We remark that although Eqg&)—(5) are formally iden-
tical to their PY counterpart, this result is in fact simpler in
such they differ in the quantitK;;, which in the PY ap-
proximation reads

1
Ki(jPY): Kic}yi(jpv)(gij)z 1—2)\”0% , (7) i: E (12)
Tij T
wherey(™"(a7;) is the contact value of the PY cavity func- | s case thek (™Y matrix can be written as a sum of

tion. In general, the parametexy can be determined only e factorized termias it can be immediately inferred by
numer|call)2/1by solw'ng aset@(p+ 1)/_2 coupled quadratic expanding the squaquj =(o+ oj)2/4] and has the interest-
equations’** and this makes the multicomponent PY s0lU-jng physical interpretation of being proportional to the area

tion of limited interest from the practical viewpoint. In par- ,¢ihe actual contact surfaceﬂrﬁ between particles of spe-
ticular, a global analysis of the phase diagram proves to be gaqi and i !

: o imatis Finally, and for reasons related to the C1 ap-
formidable task within the PY approximatidrOn the other o oyimation that will be further elaborated below, we con-
hand, in view of the simplicity of Eq(6) with respect to its

YR | -t sider case V defined by the line@rather than quadratic
PY counterpart Eq(7), this is indeed possible within the dependence

MMSA (CO0) approximation. The above results is, moreover,
fully equivalent to a parallel but different sticky HS model i_ E @
(SHS3 studied by us in previous wofi® Hence, as dis- af o7 aij
cussed in those references, this analysis can be pursued a
lytically provided that;; has a dyadic form. To this aim, we
consider polydisperse fluids with HS diameters distribute
according to a Schulz distributid.

As regards stickiness, we choose to keep it either con-
stant or related to the particle size. There are two main red!l- THE C1 APPROXIMATION
sons for this. First, one expects the adhesion forces to depend It was recently arguédn the one-component case, that

upon t_he area of the contact SL_Jrface between two particleg,, MMSA(CO) approximation can be improved by includ-
(see Fig. 1, and hence on their sizes. Second and more PraGig the next order term in the density expansion of the direct

tical reason is that this is a simple way of obtaining thecqelation function. Its extention to multicomponent mix-
required factorization. As the stickiness-size relation is not, o< reads

clearly understood, we consider five different possibilities,

: (13

fif'this case thek (™A parameters can be written as a sum
dpf two factorized terms.

denoted as cases |-V henceforth. The three simplest choices
are P cij (N =fij (] 1+ 2, pmyfri%(r)}, r=oy, (14)
1 1(o)? 1 where
R (MMSA) _ 2
Tij T O_iZJ_ 1:[K|J ]case |_127_<0-> ’ (8) .
11 1 ')’i(m)j(r):Jfim(|r_r’|)fmj(r,)dr,
g,0;
::;#,ﬁ[KfijSA)]case I~ E_Uio-j ’ (9) 20 (= r+s
! . ZTJ ds Sfm(S)f dttf(t), (15
2 0 [r—s|
1 _1(o) (MMSA) _ 2 . . N . .
—=——,=[Kj Jcase m—E_(U ) (10 is the first-order coefficient in the density expansion of the

T partial indirect correlation functiong;;(r). As discussed in
where (o) is the average HS diametetR)=3;x;F;, here Ref. 8, if we retain in the PY closure only the terms corre-
X;=p;/p is the molar fraction of speci@swith p==,p; the  sponding to the zero- and first-order expansion in density we
total number densiy and 7 is assumed to depend only on recover the C1 approximatiofi4). It turns out that Baxter
the temperature, while the remaining factorq-rp1 is a mea- factor correlation function can still be cast in the form, Egs.
sure of stickiness strength and is related to the particle size$3)—(5) but theK;; parameters have the form
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K(Cl)—KO Cl)(U”) (16)  even in the simple case of case V requires determinants of
n-dyadic matrices wittm>4) and we shall limit ourselves to
where the partial cavity functions at contact for this closurethe one-component case for simplicity.
are

y.(JCI)(O'u =1+ E Pm?’.mJ(O'.J) (17 A. mMSA approximation for the discrete polydisperse
system
Using in Eq.(15) f;;(r)=—6(oij—r)+&(r—oij) o/ For p-component mixtures, one can define the following

(127;), we find after some algebra the following result ~ generalization of the Bhatia-Thornton concentration-
concentration structure factéi:2°

T 1 ol
y,mJ(U,J)_ — [12';“ ——(‘ij szm)-l- 12;“1_ p
P " Seclk) (1;[ xm)=|s<k>|”21 (i) 251K, (23)
) “~
3 _ —
* BU”L 12 Tmj 2 (L i) where |S(k)| denotes the determinant of the matrix

L 5 S(k) whose elements are the Ashcroft-Langreth partial
+ 3(omi— ot (ohi— L) structure factord® Furthermore, th&;; (k) functions are the

1 1 elements of the inverse &k), which can be expressed as
+§Uij(031i_|-§ni)—g(Ufni_Lﬁqi)]- (18) . A A

S0 = 8= (pip)) "Zij() =2 Qmi(—K)Qmi(k),  (24)
Because of the presence of the factar;lin Eq. (18), K{ "
cannot be expressed as a sum of factorized terms |f we usgith T;;(k) three-dimensional Fourier transform of;(r),

any of the cases |, Il, or lll. Case I\(/Clc))n the other hand, Q”(k) 85— 27-r(p,p,)1’2q”(k) andq,J(k) being the unidi-
would be tractable, but it would yiellji" as a sum of 14 mensjonal Fourier transform of;(r) (k is the magnitude of
factorized terms(proportional toojo;" with n,m=0,1,2,3 ¢ exchanged wave vectaf; the Kronecker delta

exceptn=m=0,3) which is unmanageable in practice. In phase instability corresponds to the divergence of the

case V, on the other hand, a great simplification occurs angng wavelength limitSco(k=0), which is related to the

we find concentration fluctuations. Taking into account the relations
K{EY=ky+ (o + o kg + ook, (19 JBP
ij i j i“] 2 (XiX 1/23 (0)= Z xa pkBTKT)_lz(i) ,
where ] P |+
(25)
1 (0)¥o?) 1 .
K=7576" (5% 2 (200 |s(0)[=[1-C(0)| *=|Q(0)| 2, (26)
1 1 1 [whereKt is the isothermal compressibilitl,the unit matrix
(o) =+ <__>_3 of orderp, andC has elementSp(pJ)l’ Cij(K)], Scc(k=0)
576 (a”) can be reexpressed as
1 (¥ o? 1 1
- 0) 1
48 (0% 7 *2alo > @) Sed®) _ (27)

Mok |O(0)|X(pkgTKy)

1 (o)3 1{(c)*1 1{(oXo?1
ko= (576(03)7 240 218 (69 ?)'

For a one-component system the divergenc& efsig-
nals mechanical instability, associated with a gas-liquid
phase transition or condensation. However, a multicompo-
where =&, is the packing fraction. The expressi@t) is nent fluid usually becomes unstable whie remains finite
slightly more complicated than tng(ijSA) treated with case and different from zero. In this case, it is the vanishing of
IV, because of thé&, term. This noteworthy feature is the |Q(0)| which causes the divergence f-(0) and produces
main justification for the particular form of case V. a phase instability*?° Indeed if one tries to calculate the
locus of points in the phase diagram,n) where Eixiaiz
=0, using cases |, Il, or lll, discovers that such curves dis-
appeal(the quadratic equations inhave a negative discrimi-
nany as soon as we switch on the size polydispersity letting

Our first task is the analysis of the phase instabilities for{ %) #(o)?. We remark that the exact nature of this instabil-
the polydisperse system only in the mMSA using cases |, llity requires a more involved analysis and it will be deferred
and lll. to a future work.

The next level of approximation C1 is considerably more , which usually becomes a
laborious (since the calculations for the C1 approximation formidable task with increasing, is rather simple for the

(22

IV. PHASE INSTABILITIES
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mMMSA solution of Baxter model whek;;; is factorized as in 0.14
Eq. (11). In fact, Q(k) becomes am-dyadic (or Jacobj 012 |
matrix .
n 010
Qij=8;+ 2 AVBM (i,j=1,...p), 28
Q=0+ 2 A"B (Lj=1...p) (28) 008 |

o
with the remarkable property that its determinant, which is of ;¢ | MMSA | $=0.2 R

. mMSA [l s=0.2 -

order p, turns out to be equal to a determinant of order ; C1 8=0 =mmwem
(<p for polydisperse fluids’ The necessary expressions are  0.04 } § PY 820 wumee:
reported in Appendix A.

For factorizedKj;’s, one finds 0.02 |

A T 12 1, 3 1, s 0.00 . L . o L t

QI](O)=5IJ+€(pIPJ) KUJ+UiK §2KO']-+O'J- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

n
— 12Yi( & 1£ ot a. Y ) } , (29 FIG. 2. Curves for the'onset of phase instabilitye flu.id is_stable above thg
SAT) e curves showhas obtained from the mMSA approximation for a monodis-

. perses=0 system, and for a polydisperse system wgith0.2, and polydis-
with persity chosen as in cases |, I, and[dee Eq(32)]. We also show for the
one-component system the curve for the onset of mechanical instability
(30) predicted by the C1 approximatigeee Eq.34)] and the one predicted by
the PY approximatiofisee Eq.(37)].

™ my/n
fm,n:§P<0' Y™,
((--y denotes a compositional average, i.e(FG)
=3xF;G;). Note thaté, o= &n,. small » values, increasing at fixed » lowers the stability
We emphasize that the decomposition of E2P) into  curve of cases | and lll. As shown by the left branch of the

A™ and BJ(”) is not unique. HowevelQij(O) of cases | and curve(the opposite trend on the right-hand side of the figure
Il is 3-dyadic (i.e., it containsn=3 dyadic terms while  is not acceptable, since the mMSA closure can be a reason-

Qi;(0) of case Il is simply 2-dyadic. As a consequence, onéble approximation only in the low density regijike onset

has to calculate at most a determinant of order 3. The generdf instability occurs at lower. As expected, polydispersity
result for all three cases is renders the mixture more stable with respect to concentration

fluctuations. Quite surprisingly, on the other hand, the stabil-
A 1 ity boundary does not depend srat fixed » in case I, and
— _ 2 ’
|Q(0)] = P[(1+2§3)(1 124, 7) +3683,,]. 3D all mixtures with different polydispersity have the same sta-
_ . ) ) __bility boundary as the one-component case Q).
Physically admissible states must satisfy the inequality
|Q(0)|>0 (Ref. 27 and the stability boundary is reached B. C1 approximation for the one-component system

when|Q(0)| =0, which yields o
As remarked, the C1 approximation yields rather more

( (o)® (o) (a?)\? 377 complex expressions and here we restrict to the one-
(%) - (%) 1+29 (case ), component case. Yet, this example provides a flavor of how
2(1—7) this approximation would work in the multicomponent case

7= T332, (case 1), (32)  and could be compared with the result given|R(0)|=0.

;7 - ) For the one-component system phase instability coincides

(o){o°) (o) 37 with the divergence oKt . As from Eq.(25)
N T (case ).
\ <O— > <U > 1+27 L ) 1+279 1 ) 7
If the HS diameters follow a Schulz distribution, then the ~ (PKeTKr) "=a"= (1-9)? Zy o)1= e
stability boundary of cases | and lll can be expressed as (34
1 1 3y where[see Eqs(17) and(18)]

MiMz  Mj; 1+27 yEH (o) =1+yi(7) 7, (35)

T= (33 )

(i— My 3—7] (case ll) with
M, MZ1+2y ' e 1 1
whereM; =1+ js? with s=[(0?)—(0)2]¥?%(co) measuring Viln=5-2+ 2 (36

the degree of size polydispersity.

The fluid is stable at “temperatures’higher than those
given by the previous equatiorisince|Q(0)|>0). Let us
now compare two mixtures with the same packing fraction ~10-9/(1-n)+ 14y 37
but different polydispersity degree As depicted in Fig. 2 at ™ 12(1+275)

The curve for the onset of mechanical instability is
shown in Fig. 2 and compared with the PY one
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One clearly sees that the C1 stability boundary lowers and ~ Sinceh;; (r) is related to the so called direct connected-

shifts to the left in agreement with the PY result. ness functlonc i (r) through an OZ equation, one can use
Baxter formallsm agam introducing a factor funct@,ﬁ(r)
V. PERCOLATION THRESHOLD If we now defineQ. ;;(k)= & — 27(pipj) G5 (k). then it

In view of the simplicity of the mMSA(CO) solution, results that

one might expect that other quantities, besides those dis- — A
cussed so far, can be computed analytically. We now show  Si (k)=§ Qi im(K) Q. jm(—Kk) (45)
that this is indeed the case. The problem we address in this
section iscontinuum percolationThis problem is far from and thus
being new’® However, new activity along this line has been
stirred by recent and precise Monte Carlo results for the one- g, (.=> s2(0), (46)
component cas&;*?and it is then rather interesting to con-
sider its multicomponent extension. For the sake of com
pleteness we now recall the basic necessary formaftsif.

In the sticky limit theopartlal Boltzmann factors read Sm(O)—Z \/_Qllm

eij(r):e(r—ai,-)JrU—ijfa(r—a”), (38

where
(47)

ClearlyQ}, },(0) diverges to infinity whehQ. (0)|=0, and

where g is the Heaviside step function aritthe Dirac delta this relation defines the percolation threshold.
function. Another interesting and related quantity is the average

When studying percolation problems in the continuum iscoordination number
useful to rewrite the Boltzmann factor as the sum of two

terms*? e, (r)=ef; (r) + &, (r), where Z=4mpY, xix,f Thit(rr3dr. (48)
i, 0
eij(r)=0(r—0'ij), (39
KO A. mMMSA approximation
Y= —L S(r — o .
&ij (r)= i 8(r—ajj). (40 The mMMSA closure foc; (r) is
The corresponding Mayer functions will big;(r) = flj(r) (r)—f (r)=0, r>aoj. (49
r), with
( ), On the other hand when<¢;; we havee; i(r)=0 and
fi(ry=efi(r)—1, (41)  f;(r)=e;(r), so we must have exactly
fij (N=ej(r). 420 hi(r)y=ef(r)y;(r)+f(ry;r)
The procedure to obtain equationsaminnectednesand KiO_
blocking functions from the usual pair correlation functions =e;j(r)y;(r)= %yij(oij)é(r—aij) r<aj. (50
and direct correlation functions is best described through the 7ij
use of graphical language. If we substltlﬁf}eandf+ bonds Within the mMSA we have for the cavity function at

for f;; bonds in the density expansions for these functionscontact
then the connectedness functions, which we will indicate .
with a cross superscript, are expressed as the sums of those Yii(0ij)=1 for all i,j. (52)
terms that have at least 0|f1§ bond path connecting the two Following the same steps of Chiew and Glattit? we then
root vertexes. The sums of the remaining terms in the exparfind (see Appendix B for details
sions give the blocking functions.

The percolation threshold corresponds to the existence i} (r)=Kij6(r —L;;) 6(ajj—r). (52
of an infinite cluster of particles and is given by the diver-

From which it follows
gence of the mean cluster st2é®

< > f drh & (ke Q..ij(0)=8;—2m(pipj) ¥*Kjjo; . (53
=1+ X X: rh:(r)= =
cluster™ = Py 5% 1 (1= Sun(k=0) Within cases 1, Il, and IlI
C =5 Tp*
EE (Xixj)l/ZSler(kzo), (43) Q+,ij(0)_6|]+a| b] , (54)
1)
a = —2mpxY;, (55)
whereh; j(r) is the pair connectedness functigrelated to
the Jomt probability of finding a particle of speciésand a be: \/X_ijO'j ) (56)
particle of specieg at a distance and that these two par- ~
ticles are connectgdand Now from Eq.(54) follows tha’[QJ_ij(O) is a 1-dyadic
. o form. Using the properties of dyadic matricege Appendix
Sjj (K)=ij + (pipj) i (k). (44 A) we then find
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A_q 1 5ij bj+
Q4}ij(0)=— N . (57)
|Q+(0)| a 1l+a’-b
where
Q. (0)|=1+a"-b"=1-12&,. (58)

From Eq.(47) we find

Sm(0) Vx(1+a*-b*)— Z Vxia |,
|Q+ 0)]
(59
and from Eq.(46)
24 £19601 144 £0E5
Souse L g 1126, 8 (m12m7 ()
The percolation transition occurs when
(0)°
@7, (case ),
r={ 7 (case I}, (61)
(o)) n= n (case ll).
(% T My

The threshold is independent sfat fixed » for case II,

J. Chem. Phys. 122, 034901 (2005)

With case VQ+ij(O) turns out to be 2-dyadic, and the

percolation transition occurs when
_ <<r><02> Ko)®\ 7 _ 1 [ 1 \»
(]2 M, MM,/ 2’
(66)

(o)
which has the physical behavior already found with cases I,
I, and IlI.

B. C1 approximation with case V

As remarked, in case V we can work out the percolation
threshold equation even within the C1 approximation. From
Eqg. (51) we have exactly

0

hﬁ(r):in(j(:l)(Uij)tS(r—o'ij), r<oi, (67)
wherey(“(oy) is given by Eq.(17). For the closure con-

dition of the direct connectedness function we find again

cl(r)= f.J<r)+f.J<r>E PrYimi(r)

but lowers with increasing size polydispersity in cases | and

[Il. The curve is simply a straight line, as a consequence of
the mean-field character of the mMS&O0) closure. The

qualitative result found with cases | and Il is, however, in-
teresting. For the average coordination number we find fro

Egs.(48) and (50)

2247TPIEJ XinKijUij

24
=—&11601

&
3
Z EZ% (case },
= 2 (62
2 7 (o)) (cases Il and II).

T (%)

At the percolation transition we then find

= 2 (case | and I,
Z= 2IM, (case ). ©3

Using case IVQ.;;(0) turns out to be 3-dyadic; the

percolation transition occurs whé@ ., (0)|
L7 s?(4+7s%) (77 2
7 8(1+3s2+25%)
S6 7 3
+ 2 72|~ =0.

16(1+5%)(1+25%)2?\ 7
The solution »/7=p(s) such thatp(0)=1 is a monoto-
nously decreasing function with

lim p(s)=0.756431....

S—®

=0, i.e.,

(64)

(65

(68)

+f”(|’)2 pm7|(11r21+(r)=01 r=oj,

rT:f,lncef (r)y="f: i(r)=0 forr>oj;. To determlnen|, (r) we

then follow the same steps as for the mMSA case and we
find
KSy(™ o 6(r =Ly 6(o ).

g (r)= (69)

When we inserK;; from Eq.(19) into the expression for

Q+ij(0) [see Eq.(53)] this becomes a 4-dyadic matrix
whose determinant is

6
'Q+(°)':1+§1 ai(s, !, (70)

where the coefficientg;(s, ) are given in Appendix C.

The percolation threshold is the solution @+(0)|
=0. This is an algebraic equation of order 6ril\e can plot
the correct root( %) for different values of polydispersity, as
reported in Fig. 3. We see that increasing the polydispersity
increases the nonpercolating phase. One can clearly observe
a clear improvement from the mMSAC0) approximation
although then—0 limit is still qualitatively different from
the PY one-component case. It would be interesting to study
if the “true” percolation threshold passes through the origin
(7=0,7=0) (as occur in the CO or C1 approximations
has a finite limit 7= 0,7= 1) (as it occur for monodisperse
fluids in the PY approximation withp=1/12). Even if the
Monte Carlo results of Refs. 11 and 12 are inconclusive in
this respect, physically it is plausible to assume that at very
low density the average number of bonds per particle is not
sufficient to support large clusters at all and we would tend

Then with this case we find that increasing the polydispersityto favor the first scenarit’,

the nonpercolating region of the phase diagram diminishes.

For the one-component system the average cluster size is
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1.6

§=0 —— ) S_5 7 (c1)
- Z=2—y"o) (73
| s=0.2 rd
1 -4 S=0.4 - "l"' T
12 g:g'g and at the percolation transition we fid-2.
=1
10 ° ]
Py

© 08 VI. PHASE EQUILIBRIUM

06 | Phase equilibrium is another interesting aspect which

can be analyzed in full details within our model. It was
pointed out in Ref. 10 that the equation of state derived from
the energy route for a one-component system of sticky hard
0.0 ; X ) ) , ) spheres in the mMSA approximation is van der Waals-like.
0.0 0.1 0.2 03 04 05 0.6 0.7 The same holds true for the system studied with the C1 ap-
n proximation. It is worth stressing that the equation of state
FIG. 3. Dependence of the percolation threshold, as calculated from the 03\(/9“\16(1 from the C?mpreS;ibil)itE/ r(oute)/can]not yis%ld a Wl,i]n der
Co Eh . ’ : 3 aals loop since from Eq25) [J(BP)/dp]+>0."" On the
approximation using case f6ee Sec. V[ from the polydispersity. other hand the equation of state derivedﬁ}rgm the virial equa-
tion has been shown to diverge for the mMSA
approximatiofi and we anticipate that it also diverges for the

04

02|

Ry

Secluste™ 1+pﬁ+(0)=f+ C1 approximation. This is the reason why we focus our
1-pT7(0) analysis on the energy route in the present work.
1 1 In this section we will find the binodal curves for the
= = ) polydisperse system treated with the mM$20) approxi-
(0,02 [1- 5y Do) ]? mation and for the one-component system treated with the

(71) C1 approximation. The coexistence problem for a polydis-
perse system is, in general, a much harder task than its one-

The percolation transition occurs whegy“Y)(o) = or component counterpart, since it involves the solution of a
2(—372+v37321- 97+ 307 large (infinite) number of integral nonlinear equations. But
n= 112,17 3072 . (720 we will see that since our excess free energy is expressed in
- T

terms of a finite number of moments of the size distribution
In Fig. 4 we compare our result for the one-component ( function (a similar feature occurs for polydisperse van der
=0) system with the PY result of Chiew and Glalddand ~ Waals model$® for polydisperse HS(Ref. 17 and for

the Monte Carlo simulation of Miller and Frenkgt!? Yukawa-like potentiafs*?9 the coexistence problem can be
The average coordination number becomes simplified and becomes numerically solvable through a
simple Newton-Raphson algorithreee Eqs(79)—(81)]. The
0.95 . . . ' necessary formalism to this aim can be found in a recent
review!’” and we will briefly recall it next.

percolation /]
L1/

A. From a discrete to a continuous polydisperse

0.20 mixture

Consider a mixture made gf components labeled
=1,...p, containingN(® particles and with densityp(®,
which separates, at a certain temperatyrito m daughter
phases, where each phase, labetedl,... m, has a number
of particlesN(®) and densityp(®). Let the molar fraction of
the particles of species of phasea be x{, =0 corre-
sponding to the parent phase. At equilibrium the following
0.05 | set of constraints must be fulfilled;) volume conservation,

0.0 o1 02 03 04 o5 (i) conservation of the total number of particles of each spe-
cies, (iii) equilibrium condition for the pressures
P@(7,p(® {x{®)), and (iv) equilibrium condition for the
FIG. 4. Binodal curve and percolation threshtte Eq.(73)], for a one-  chemical potentialsu!®(7,p(®,{x{)}). This set of con-

component system, in the C1 approximation. For comparison we also sho : : :
the percolation threshold of the Percus-Yevick approximatiBef. 15 Straints form a closed set of equatl()((ryexél)ogeﬁgl))/(l\lfzol)‘or

(which exists forr=1/12), the one from the Monte Carlo simulation of deta"9 for.the_ (2+ p)m unknownSp '
Miller and Frenkel(Ref. 12 (circles are the simulation results and the fit, and Xi(a) with i=1,...p and a=1,...m. Extension to the

the dot-dashed line, is only valid far=0.095), the binodal curve of the polydisperse case with an infinite number of components is

Percus-Yevick approximatioffrom the energy rouje(Ref. 4), and the bin- ; i ; ; ;
odal curve from the Monte Carlo simulation of Miller and Freniéf. 12 achieved by SWItChlng from the discrete index variable

(points with errorbars are the simulation results and the fit, the dot-dasheth® continuous variable using the followingreplacement
line, is merely to guide the eye rule:

0.10 |

Ul
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xi—F(o)do, (74  where we indicate with the superscript exc the excess part

] ] ) ] ) _ (over the ideal of the chemical potential. For a complete
whereF(o)do is the fraction of particles with diameter in yarivation of Eqs(79)—(81) see Appendix D.

the interval ¢,o0+do). The functionF (o) will be called
molar fraction density functionr more simply size distribu-
tion function. Note that, due to this replacement rule, we also

have C. Thermodynamic properties
P (7, p(@ Ix(®}) P 7 pl@:[F@)]), (75) In order to obtain the equation of state of our model Eq.
(1) from the energy route, one exploits the following exact
w7, p@ I = WD (g, 7, p ;[ F@]), (76)  result(if 7;;=1/¢;; with the €; independent of);

i.e., the thermodynamic quantities become functionals of the oxc
size distribution function and the equilibrium conditidiig— I(BATIN)
(iv) has to be satisfied for all values of the continuous vari- at
able 0. The phase coexistence problem that now consists in

solving the constrainté)—(iv) for the unknowns(®), x(*), —2mp D XiX;
andF{9(g) for a=1,...m, turns out to be a rather formi- o
dable task hardly solvable from a numerical point of view. 1 (R 1 R.
Fortunately, as outlined in the following section, for our =27792 Xin_J 4 ij yij(r)rzdr.
model a remarkable simplification occurs. n] 7 J oy 127 Rij = 0y

B [ Beij(r)]
—27Tpi§’j: xiij’ Tgij(r)rzdr

Rj 1 )
;eij(r)yi,-(r)r dr

(Tij

Upon taking the sticky limit we find

B. Truncatable excess free energy
A(BATIN) 71

As is described in the following section, the excess free = = X_X_ig?_y_.(a_) (84)
. " . aT <0.3>7... PR FA AN R
energy of our system iguncatable it is only a function of I ij
the three moment§;, i =1,2,3 of the size distribution func-
tion [see Eq.(86) for cases I, II, lll, IV, and V treated with 1. mpmSA approximation
mMSA, and Eq.(100) for case V treated with J1 So we o o . )
have the following simplification . Within the mMSA approximation the partial cavity func-
tions at contact are all equal to 1 so from Eg4), after
P@(7,p();[F()])— P (7,pl); { (™)), (77)  integration overr from 7= (hard sphere cagewe find

w7, [F )= u (o, mp ), (79)

,B( exc __ pex
h (@) hort-hand ion fafl® &le) gla) DAsHs THST
where{&“} is a short-hand notation faf;™ &5, &5 . It

. N 0
turns out that the two-phasenE2) coexistence problem,
the one in which we are interestéde are thus concentrating 1 gi
on the high temperature portion of the phase diagrast T & (case },

duces to the solution of the following eight equations in the

eight unknownsp™®, p®@, {£M}, and{&?)}, —%gzgl (cases Il and I,

(@_T (a)f (@) ©) (1) (). [0 [£2) Tl 11 @3
§9=5p" | Qo 7p™p T HETI{ETD - (Bt Eoky) (case U,
xFO(g)o'de, i=1,23 a=12, (79) 11 £
1
—;§(§1§2+§— (case V.
0

1= J QM (o, 7,p,p D, p P {2 F O 0)do,
The pressure can be found, fro8P/p= nd(BAIN)/dn

a=1 or 2, (80
P(7,pM; {1} =PA)(7,p@);{ 1), ®) g
with gﬁ[PSHs(TyPi{fi})_ Pus(7.0:1&})]
(P = p@)(1= 814+ 51,6547
(P =p)+(p™—p)e N %o
and
A= 1 &) g 7 5@ where forP,5 we use an equation due to BouhlMansoori,
H H (0.7 p ) Carnahan, Starling, and LelariRefs. 31 and 3Rwhich re-
— & g, 7, pM;[FO), (83)  duces to the Carnahan-Starling one wiser0,
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a
gﬁPHs(T,P;{fi})

&
(1-&3)°

3 1
+_772_
(1=7n)°M;

M,
Mz [

£o +3 §162

1-& ~(1-&)°
&8

1
(1 g )3 for

37 7’
A= 1

+3

=Zysbo=

87

The excess free energy of the polydisperse hard sphere

system is obtained integratin@ (s—1)/n over 5, from 7

=0, and recalling that the excess free energy is zero when

7=0. We then find®

BAYS m My 37 1

1
N —(1_7])2M—§+1_7]M—2+[M—%—1In(1—77)
8 L&,
T GG CE&H(1-&)
3
+ ?%—1)|n(1—53). (88)

Note that bothAg[{sandAfS depend upon only a finite num-
ber of momentst,, and this is the crucial feature for the
feasibility of the phase equilibrium, as remarked.

For the chemical potentigBu;=Jd(BA/V)/dp; we find
after some algebra

BuTo,1,p{&})

=(/J,L?%-I—A/J,[O])-i-(/.L[l]-i-A/.L[l])a'

+(pBl+ A po?+ (uil+ Aol (89)
where
pld=—In(1- &), (90)
phd=361(1-¢&;), (91)
2
mi=|3 3% )In(l £3)
&
+3&/(1—&5)+| 3 gz) / (1-&)% (92)
[ §2 g
phs=| —2z|In(1-&)+| é— (1—-¢&3)
& &
¢ ¢
+ 35152——5)/<1—§3)2+ 2—2)/<1—§3>3.
& &
(93)
and

J. Chem. Phys. 122, 034901 (2005)

(1 §1
Tfo
0 (cases Il and I,

14

T4
18
\7'250

(case 1),

(case 1IV), (%4

(case V),

13¢

T &

(case ),

(cases Il and I,

1
- ;52
3¢,

Apttl= (95)

T 4

11 3¢2
;E(gfr 5_01) (case V,

(case IV,

(0 (case ),

1
—;gl (cases Il and I,

3¢,

Apl?l=¢ (96)

) (case IV,

\ T2

(case V,

(0
0 (cases Il and Il
_1l%

T4
(case V.

(case J,

Apl3l=4 (97

(case 1V,

L O

It is noteworthy that if we retain in the expressii)
for Pyg, only the first term, then our case IV coincides with
the van der Waals model of Bellier-Casteka al® with
n=1, =0, upon identifying 4 with the temperature used
by these authors.

2. C1 approximation with case V

In analogy with what we have done before, we now
consider the C1 approximation for case V. Using EL?)
into Eq. (84)

IBATIN) (o) (a%)+(o)?
127 kot k( @ )
(o%)(0)
+ks, o (98)

Integrating fromr=o we find
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TABLE I. For the one-component system, we compare the critical param-
eters obtained from the mMSA, C1, and PRef. 4 approximations with 0.094
the ones from the Monte Carlo simulation of Miller and Frentef. 12. 0.002 b
Te e (Zsnge 0.090 |
mMSA 0.0943 0.13 0.36 0.088 |
C1 0.1043 0.14 0.37 o
PY 0.1185 0.32 0.32 0.086
MC 0.1133 0.27
0.084
0.082 %
BIASs ATS) 0080 |
N 0.078 S : At
0.0 0.1 0.2 0.3 04 0.5 0.6
3 2 2 2
_771(<0> (o)(o >)+77 1(<a><o> b
5 3 3 ST 3
27 <U > <U > 2 T <U > FIG. 5. Cloud and shadow curves for case | in the mMSA at two values of
3 2/ 2\2 2/ 2\2 polydispersity:s=0.1 ands=0.3. For the case=0.3 we also show three
T a)o 1/1(o)«o
+< Z +3< ) <3 2> )+ _2(_ % coexistence curvegcontinuous lines obtained settingp(®=0.08, p©
(o) (o) ™\4 (a°) =0.25, andp!®=0.197=p,,. For comparison the binodal of the monodis-
perse 6=0) system has also been included.
3(a)%oD) 1(1 (0)° 1 (o)D)
4 (0% | \72(c%)? 24 (0% ||

cloud curve, i.e.p®(7,)=ps(7), the density of phase 2
(99 ends on the shadow curve. The interception between the
For this case we limit ourselves to study the coexistenceloud and the corresponding shadow curve gives the critical
problem for the one-component system. In Table | we compoint (7¢,,pc): When p(®=p., the two solutionsp™®(7),
pare the critical parameters obtained through the energy®)(7) meet at the critical point.
route for the mMSA, C1, PY approximations and MC simu- In order to find the cloud and shadow curves we choose
lation, for the one-component system. as the parent distributioR(®)(¢) a Schulz distribution with
Note that, as already pointed out in Ref. 8, a density(o)=1, and the initial conditions, for the Newton-Raphson
expansion ofy(o) within the PY approximation gives to algorithm, in the high temperaturg and low polydispersity
zero order thg/(o) of the mMSA approximation and to first s, region. Our starting conditions for the solution are
order they(o) of the C1 approximatiorfas should be ex-

. ) . (a)zp(a) , (100

pected comparing the density expansions of the closures cor- oc¢
responding to these approximation$o at low densities -
Zgysfrom mMSA, C1, and PY should be comparable. From §(1a)=gp(“), (101
Table | we see that the true critical parameters are between
the PY and the C1 ones. @_T (a 5

In Fig. 4 we depict the binodal curve obtained from the 2 " gP (1+55), (102
C1 approximation for the one-component system and we
compare it with the PY binodal curvébtained from the O T 2 2
energy routg Ref. 4 and the one resulting from the MC é)—gp( )(1+S*)(1+23*)’ (109

- . . 2 _
simulation of Miller and Frenket? Remarkably, the gas for a=1,2, wherep® andp(® are the coexistence densities

liquid coexistence curve predicted by C1 lies closer to the a temperature, for the one-component system. Once the

MC data than the one predicted by PY on the gas branch an?oud and shadow curves are determined we proceed to find
further on the liquid branch.

the coexistence curves for a given mother density.

In Fig. 5 we depict the cloud and shadow curves ob-
tained with our case | for two representative values of poly-
In this section we describe the numerical results obtainedispersity,s=0.1 ands=0.3. For comparison the coexist-

D. Numerical results

from the solution of Eqs(79)—(81) for the SHS in the
MMSA, through a Newton-Raphson algorithm.

We first determined theloud and shadowcurves by
solving Egs(79)—(81) for the particular case in which we set
p©@=pWM so thatFM()=F (o). The cloud curvep (7)
is such that the solutions®)(7), p®)(7) of the full coexist-
ence problem given by Eq§79)—(81), for a fixedp(® (the
coexistence or binodal curvedave the property that for a
certain temperaturey, p( 7o) = pc(70)=p'?, i.e, the den-

ence curve of the one-component systes¥() is also
reported. As polydispersity increases, the critical point
moves to lower densities and lower temperatures, (
=0.094, p,=0.249 ats=0, 7,=0.093, p,~0.24 ats
=0.1, and7,=0.085,p.,=0.197 ats=0.3). Let us now fix
s=0.3, a value corresponding to a moderate polydispersity.
Again in Fig. 5 we depict three coexistence curves upon
changing the mother density(®=0.08, p(©=0.25, and
p(0=0.197=p,.

sity of phase 1 ends on the cloud curve. The shadow curve is All these curves closely resemble the corresponding
the set of pointg4(7) in equilibrium with the corresponding ones obtained for the polydisperse van der Waals mGdel,
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1, r T r '
® FO — 0.094 1
14t e Fi1) 1=0.084 -
' 7N F® t=0.084 - 0.092 1
12 0.090 ]
_10f 0.088 .
)
g 08 © 0.086 1
06} 0.084 1
04t 0.082 7
02 0.080 1
0.0 : : . 0.078 alds -
0.0 0.5 1.0 15 2.0 0.0 0.1 0.2 0.3 04 0.5 0.6
P
16 TEOr — FIG. 7. Cloud and shadow curves for cases I, IV, and V in the mMSA at
14 } §N FE;; 1=0.078 - s=0.3. For comparison the binodal of the monodispesse() system has
F* 1=0.078 - also been includedcontinuous ling
12 | 1
= 07 1 tion of sterically stabilized colloids. These systems are, how-
5 08¢ 1 ever, affected by intrinsic polydispersity in some of their
w 06 physical propertiegsize, species, efcand hence the effect
| ] of polydispersity on the corresponding theoretical models
04 | 1 cannot be overlooked and is then a rather interesting point to
02 address. As only formal manipulationsan be carried out for
: the multicomponent Baxter SHS model within the PY ap-
0.0 = : : proximation, we have resorted to a simpler closure mMSA to
0.0 0.5 1.0 1.5 2.0 25

which the PY closure reduces in the limit of zero density and
S that was recently showrio reproduce rather precisely many
FIG. 6. Evolution of the size distribution of the coexisting phaB€s(a) of the interesting features of its PY counterpart. Our analysis
andF®)(¢), with temperature along the critical binodal of Fig. $<0.3, has also been inspired by recent results by Miller and
p{?=0.197=p,). For comparison also the parent Schulz distribution is Franke}” who showed that Baxter SHS model coupled with
shown(continuous ling PY closure reproduced fairly well their MC data in the one-
component case. We have studied the effect of polydispersity

agreement with previous results. In Fig. 6 we show how thé®n phase stability boundaries, the percolation phase transi-
two daughter distribution functiongat s=0.3 and p(© tion, and the gas-liquid phase transition. We have considered

=p,,) differ from the parent Schulz distributiofa process five different cases of pondispersity: This.is becau;e there is

usually calledfractionation), for two different values of tem- O geéneral agreement on the way in which adhesion forces

peraturer=0.084 andr=0.078. are depending on the size of particles. Cases | and Il had
Next we consider differences in the critical behavior lready been discussed in previous work by uase il is a

with respect to changement in the case. In Fig. 7 we shovVa”ant of case |, whereas a case similar to case IV had been
the cloud and shadow curves obtained using cases |, IV, argfnPloyed by Tutschka and Kz_a’rﬁ.Fmally_cas_e V has been
V at s=0.3. While for cases | and V the critical point is specifically devised to cope with approximation C1. In spite

displaced at lower temperature and lower density respect i the apparent redundancy of all these subcases, we believe
the monodisperse system, the critical point of case IV idhat each of these examples has a reasonable interest on its

displaced at higher temperatures and lower density. Th8W™: and he_nce we_have i_r}cluded them all in our discussion.
cloud curves of cases Il and Il have a low density branch Ve studied the instability boundaries and the two-phase
that does not meet the high density one as so0s>a8; coexistence problem of polydisperse SHS system in the

moreover, the cloud curve does not meet the corresponding™SA (CO). The next level of approximation C1 would still
shadow curve, so there is no critical point. We are not award® feasible, but significantly more lengthly. We have laid

of similar features in other polydisperse models, althougloWn the necessary formalism in Secs. Il and VI.C.2, and
this is of course to be expected in other cases as well.  tested its effect on the one-component case, by comparing
the results against the PY approximation and MC data. We

derived the percolation threshold of the polydisperse system
both within mMSA(CO) closure(for all five casesand in the

In this work we have performed an extensive analysis ofC1 approximatior(using case V.
the phase diagram for Baxter SHS model in the presence of We found that the effect of polydispersity on the stability
polydispersity. In spite of its simplicity, this model has beenand phase boundaries slightly depends upon the chosen case,
proven to be extremely useful in the theoretical characterizabut there are general features shared by all of them: polydis-

VIl. CONCLUSIONS
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persity renders the mixture more stable with respect to conied by Chen and ForstmarifiEven though a characteriza-
centration fluctuationgin the small density region, see Fig. tion of the instability boundary in the spirit of Chen and
2) with the exception of case Il for which the stability bound- Forstmann seems unattainable for a polydisperse system, it
ary is independent from the polydispersity; E¢81), (64),  would be desirable, in the future, a more precise location of
and (66) (in the mMSA), and Eq.(70) (in the CJ), describe the instability boundaries. Moreover the way we found the
its effect on the percolation thresholdee Figs. 4 and)3 instability boundaries for the polydisperse system was to
Polydispersity increases the region of the phase diagrarstart from the instability condition valid for a discrete mix-
where we have a nonpercolating phase, with the exception dgfire and take the limit of a continuous mixture on the insta-
case |V, for which the opposite trend is observed, and of cashkility boundaries of the discrete mixture. It would be inter-

Il for which the percolation threshold is independent fromesting to compare our analysis with the one given by Bellier-
the polydispersity; polydispersity reduces the region of theCastellaet al. (see Sec. IIC in Ref. 18who take the
phase diagram where we have a gas-liquid coexistence faontinuous limit from the outset(ii) all the percolation
cases | and V, while the opposite trend is observed for castaresholds that we have calculated have a low density branch
IV (see Fig. 7. For cases Il and Il we obtained cloud curves that enters the gas-liquid coexistence region. The same fea-
with a gap at high temperature, moreover the cloud curveure is observed for the one-component system studied
does not meet the corresponding shadow curve, so there is lorough Monte Carlo simulatiott:*2 While it is clear that
critical point, as soon as polydispersity is introduced. continuum percolation is, strictly speaking, not a thermody-

In conclusion, the typical effect of polydispersity is to namic phase transition, one could expect, from a “dynami-
reduce the size of the unstable region, the percolating regioral” point of view, an interference between the formation of
and the two-phase region of the phase diagram, althouginfinite clusters of particles and phase separation, and a clari-
exceptions to this general rule have been observed for caséisation of this point would have interesting experimental
[, 111, and IV. applications; andiii ) the polydisperse system is expected to

For the one-component case we also compared the pedisplay, in the low temperature region, other critical points
colation threshold and binodal curve obtained from the Cilsignaling the onset ofm>2 phase coexistenc& and it
approximation with the results from the PY would be interesting to study their evolution with polydisper-
approximatiof*® and the results from the Monte Carlo sity for our system.
simulation of Miller and Frenkéf (see Fig. 4 The percola-
tion threshold from C1 appears to approach that from PY, buRCKNOWLEDGMENT
is still si_gnificgntly different from thg r_esults from the Monte This work was supported by the Italian MIUFPRIN-
Carlo simulation(the zero density limit, on the other hand, ~ofN 2004/2008
appears to be more physically sound than the PY one, and
this feature remains to be elucidate@he gas-liquid coex- ApPPENDIX A: DETERMINANT AND INVERSE
istence curve predicted by C1 is better than the one given bpg A DYADIC MATRIX
PY on the gas branch and worse on the liquid branch. Table
| shows how the truéfrom the Monte Carlo simulation of
Miller and Frenke'?) critical temperature and density for the
gas-liquid coexistence should lay between the ones predicted
by PY and the ones predicted by C1.

Future developments of the present work can be envis- 1+A®-B - AW.B® .. A0
aged along the following lines(i) as pointed out in . A®.BM  1+AR.BE) ... AQ).BM
Ref. 24 on definingyg=11Xm/Scc(0) and ya=1II X/ Ql= : : : :
[(pkgTK1)Scc(0)], the conditionyg>0 is necessary but
not sufficient for the material stability of the system and the
condition#;>0 is necessary but not sufficient for the mixed
material and mechanical stability. It could happen that those
two conditions are satisfied but the system is nonethelessurthermore, any dyadic matriQ) admits analytic inverse
unstable as occurs, for example, in the binary mixture studfor any numberp of components, with elements given by

Given then-dyadic matrix of Eq(28), its determinant is

INON:=1E AM.B@ ... 14 aAM.BM
(A1)

5”, Bj(l) BJ(Z) . BJ(”)
Ai(l) 1+ AM. M) AL).B?2) . A1), g
~ 1
Qi_].lzT Ai(Z) A(2). g1 1+A@). g2 ... A).gM) | (A2)
QI . . . .
Ai(“) AM. 1) AM.B(2) ceo 14+AM. B
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APPENDIX B: DERIVATION OF EQ. (52)

The closure conditiori49) justify the usual generalized

Wiener-Hopf factorizatiofr

reg ()= —aj ' (n+2m> pmfm At (t)a] (r 1),
m Lmi
(B1)

rhif(rh=—a;'(N+27% pmf dtc(H(r—1)

Xhp(lr=t)), (B2)

wherer>L;;, the prime denotes differentiation, aqﬁ(r)
are real functions with support dit;; ,o7;] and zero every-
where else.

Let us determine]fjr(r). Using the exact conditiofb0)
in Eq. (B2) we find forL;; <r <oy,

x(r—t)%5(|r—t|—amj). (B3)
mj

The second term on the right end side is equal to

272 P mim(r — 0mj)Kimj Which is zero whenr<o;. So
we simply have

a; ' (N==Kyd(r[-aij), Lj<r<oy. (B4)
Integrating this equation gives E(52).
APPENDIX C: COEFFICIENTS OF EQ. (70)
The coefficients in Eq(70) are as follows:
_ m(2+57)(1+3s*+2s")°
q]_(s, 77)_ - 2(1+32)3(1+ 252)4 ’ (Cl)
A —4+[n(2+ n)—5]s?H(1+ 35+ 25%)?
qZ(S! 77)_ - 4(1+52)3(1+232)4 y
(C2
2 2 4
~ n{—=2+[67(1+7)—5]s"—2s"}
Q3(S, 77)_ 24(1+32)(1+ 252)3 ’ (C3)
32 2
n°s[2+5n+(4+7n)s]
q4(S! 77)_ - 96(1+52)2(1+ 232)4 ’ (C4)
q5(S, 7])20! (CS)
- 77434
qG(S! 77)_ 23041+32)3(1+252)4 . (C6)

APPENDIX D: PHASE COEXISTENCE CONDITIONS

In this Appendix we give a complete derivation of Egs.

(79—(81) in the main text.

Consider ap-component mixture. Each specieshas
number density(?=N®/v(©) whereN(® is the number of
particles of type andV(® the volume of the system.

J. Chem. Phys. 122, 034901 (2005)

We assume that at a certain temperatardhe system
separates inton daughter phases, where each phase
=1,...mis characterized by a volum&® and a number of
particles of species, Ni(“) .

At equilibrium the following set of constraints must be
fulfilled.

(1) Volume conservation
m

V(0 = 2 v@@: (D1)
a=1

(2) Conservation of the total number of particles of each
species

m
N@O=> N i=1..p, (D2)
a=1
(3) equilibrium condition for the pressures
PE(7,V(@ (N(}) =P 7, V(A (NI, (D3)

(4) equilibrium condition for the chemical potentials
m (VO AN = (7, VO (NP,

i=1,..p, (D4)

where{N{} is a short-hand notation fd¥{,...,Ng.

It is convenient to use the following set of variables:
p@=N@/@ - xD=N@N@@D =1, p with N©®
=3N{*  Introducingx(®=N(®/N© Egs.(D1)-(D4) can
be rewritten as follows:

1 1
=2 X, (D5)
P a P
xO=2 x(@x@, (D6)
P (7,0, {x(*}) = PP (1,0 {x(}), (D7)
D (r,p @ X} = uP (7,08 {x(P), (D8)
with the normalization condition
> x =1, a=1,..m. (D9)

Equations(D5)—(D9) form a set of closed equations for the
(2+p)m unknownsp(®, x(@, x{* with i=1,...p and «
=1,...m. Note that whemm=p+ 1 the densities of the vari-
ous phases® will be independent op(®), since relations
(D7), (D8), and(D9) form a closed set of equations for the
unknownsp(@, x{®)

In the continuous polydisperse limip{~«) we have to
take into account the substitution rul&4). Then the thermo-
dynamic quantities will be rewritten as in E4g5) and(76),
and Eqs(D5)—(D8) become

1 1

=2 X, (D10)
p a P

FO(o)=2] F9(0)x(@, (D12)
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PLI(7,p(;[F{0]) = P (7,p ) [FA)), (D12)
(o, 7,p % [F ) =uP(a,7,pP;[FP]), (D13

with the normalization condition
J Fl9(g)do=1, a=1,..m. (D14)

Integrating Eq(D11) over o and using Eq(D14) we find

> x@=1,

a

(D15)

J. Chem. Phys. 122, 034901 (2005)

Fl9(0)=F(0)Q!(, 7,01, p1), p @ [FW],[F),

(D22
where theQ(® are defined by Eq82).

Formally Egs. (D18), (D20), and (D12) with a=1,
B=2, and(D14) with «=1 or 2, form a closed set of equa-
tions for the unknowng®, p@ FI)(g), andF@)(g). In
our case the free energy of the syst@mases |, Il, IlI, IV, and
V treated with mMSA, see E(85), or case V treated with
C1, see Eq(99)] is truncatable it is only a function of the
three moments;, i=1,2,3 of the size distribution function
F. So the problem is mapped into the solution of the eight

The set of Eqs(D10)—(D14) forms a closed set of equations Egs. (79)—(81) in the eight unknowng®), p@) &b = &b

for the unknowns(@, x(@) andF(“(¢) with a=1,... m.
Note that, due to the substitution rul@4), sum overi be-

&, P, €2 ande?.
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Two-phase coexistence

Let us now specialize ourselves to the two-phase (
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(0)_p(2) (1)

p p
(1) —
xO=" s S (D16)
pH=pp
2 p(l)_p(O) p(2)
XK= ,@ 0 (b17)

Note thatx® and x(®> must be positive. So ipH<p(?),
then p(® must lie betweerp® and p@, if pP<p® it
must lie betweerp® and p*. Substituting these expres-
sions in Eq.(D11) we find
(1)

_ @
p
OF@P

o (2)
+
p@=p@ P

.
(D18)

0)_
wemP _—P

p@DF@=,

Next we divide the chemical potentials in their ideal and

excess componenjs= '+ 1 ®°where

B (a7, [FO) =IN[A%pOF ()], (D19)

with A being the de Broglie thermal wavelength. Now Eq.

(D13) becomes
(2)

exc

FO(0)=F@)( ) %meﬁm (D20)
Aluexc: Mexc(Z)(O_’ T’p(Z);[F(Z)])
_,uexc(l)(a.’T,p(l);[F(l)])_ (D21
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