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We study, using Monte Carlo simulations, the cavity and the bridge functions of various hard sphere
fluids: one component system, equimolar additive, and nonadditive binary mixtures. In particular,
we numerically check the assumption of local dependency of the bridge functions from the indirect
correlation functions, on which most of the existing integral equation theories hinge. We find that
this condition can be violated either in the region around the first and second neighbors shell, or
inside the hard core, for the systems here considered. The violations manifest themselves clearly in
the so-called Duh–Haymet plots of the bridge functions versus the indirect correlation functions and
become amplified as the coupling of the system increases. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1739392#

I. INTRODUCTION

A central problem in the theory of the static structure of
classical liquids is to find a simple and efficient way to ob-
tain the pair correlation functions from the interparticle
forces in pairwise interacting fluids. Exact statistical
mechanics1,2 allows us to write the formal solution of such
problems as the coupled set of equations:

11hi j ~r !5exp@2bf i j ~r !1hi j ~r !2ci j ~r !1Bi j ~r !#
~1!

and

hi j ~r !5ci j ~r !1(
l

r lE dr 8cil ~r 8!hl j ~ ur2r 8u!, ~2!

wherehi j (r ) andci j (r ) are the~total! and direct correlation
functions for atomic pairs of speciesi andj, r l is the number
density of thelth component andb51/kT. The functions
Bi j (r ), named bridge functions after their diagrammatic
characterization1 arefunctionalsof the total correlation func-
tions, i.e., their value at distancer depends on the values of
all the correlation functions at all distances.

The basic difficulty with Eqs.~1! and ~2! is that we do
not have an explicit and computationally efficient relation
betweenBi j (r ) and the correlation functions, so we have to
resort to approximations. The results of the last three decades
of research have shown that it is possible to make progress
by approximating the bridge functionalsBi j (r ) by functions
of the indirect correlation functionsg i j (r )5hi j (r )2ci j (r )
~approximate closures!. Once we have an explicit form for
Bi j (g i j (r )), the resulting integral Eqs.~1! and ~2!, although
approximate, can provide excellent results for the static
structure of liquids. Moreover, besides the original focus on

the structural properties, in recent years interest has grown
toward using approximate integral equations to obtain ther-
modynamics and the phase diagrams of liquids and liquid
mixtures.3

In particular, Kjellander and Sarman4 and Lee5 have de-
rived an approximate but useful formula for the chemical
potential of a fluid requiring only the knowledge of the cor-
relation functions at the thermodynamic state of interest.
Their formula is based on two main approximations. The first
is the same assumption from which integral equations are
derived, i.e., that the bridge functionsBi j (r ) are local func-
tions of the corresponding indirect correlation functions. The
second stronger assumption is that the only dependence of
the bridge functions from the thermodynamic state is through
the indirect correlation functions. Thus, the functional depen-
dence ofBi j (g i j ) is the same for all the states.

In this paper we want to investigate via direct numerical
computer simulation the two approximations.

Up to now, numerical studies of the bridge functions and
of the accuracy of the local approximation have been limited
to the case of one component systems6,7 or electrolytic
solutions.8 We feel that two-component systems deserve
more interest for many reasons:~i! there are strong indica-
tions that the approximate universality of the bridge
functions9 is not valid in multicomponent systems,~ii ! the
phase diagrams of multicomponent systems are richer and
more interesting than those of pure fluids, and~iii ! it turns
out that modeling the bridge functions for multicomponent
systems is much more difficult than for pure systems.

We have studied, through Monte Carlo simulation, the
bridge functions of a few systems of nonadditive hard
spheres~NAHS! mixtures, including the limiting cases of
additive~AHS! mixtures and one component system. In par-
ticular we are interested in a direct check of the local hypoth-
esis for the functional relations between bridge and correla-
tion functions in binary mixtures. To this aim we use the so
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called Duh–Haymet plots.8 These are plots of the partial
bridge functionsBi j as a function of the partial indirect cor-
relation functionsg i j .

The paper is organized as follows: In Sec. II we summa-
rize the equations we used to evaluate the cavity correlation
functions from which the bridge functions can be easily ob-
tained and we provide the relevant technical details of the
numerical calculations. In Sec. III we present and discuss our
numerical results.

II. CALCULATION OF THE CAVITY
AND BRIDGE FUNCTIONS

A. Theory

The binary NAHS system is a fluid made of hard spheres
of two species. One specie, here named 1, with diameterR11

and number densityr1 and another specie~2! with diameter
R22 and number densityr2 , with a pair interaction potential
that can be written as follows:

fab~r !5H ` r ,Rab ,

0 r .Rab ,
~3!

whereR125(R111R22)/21a, with a being the nonadditiv-
ity parameter. We will also study various special cases as the
one component system, and the binary mixture of additive
hard spheres~AHS! a50. We can rewrite Eq.~1! to obtain
the partial bridge functions

Bab~r !5 ln yab~r !2gab~r !, ~4!

whereyab(r ) are the partial cavity functions

yab~r !5gab~r !exp@bfab~r !#. ~5!

Here gi j (r )511hi j (r ) are the partial radial distribution
functions. Notice that both the cavity functions and the indi-
rect correlation functions are everywhere continuous, and so
is the bridge.

In the region outside the hard cores, in a hard sphere
~HS! system, the cavity correlation functions coincide with
the pair distribution functionsgi j (r ). In order to determine

the relationship between the partial bridge functions and the
partial indirect correlation functions within the hard cores,
we need to calculate the partial cavity functions. There are
two distinct methods for calculating them:6 the one which
uses Henderson’s equation10 and the direct simulation
method of Torrie and Patey.11 We decided to use the first
method which is accurate at smallr.

For a binary mixture the like cavity functions can be
obtained from the following canonical average:

yaa~r 1a2a
!5

Vza

Na
ȳaa~r 1a2a

!

5
Vza

Na
K expH 2bF (

i a.2

Na11

faa~r 1ai a
!

1 (
i b51

Nb

fab~r 1ai b
!G J L

N1 ,N2 ,V,T

, ~6!

where a, b51, 2 with bÞa, r i aj b
is the distance between

particle i of specie a and particle j of specie b, za

5exp(bma)/L
3 is the activity of speciea, ma its chemical

potential, andL the de Broglie thermal wavelength,V is the
volume,Na the number of particles of speciea, so that the
prefactor Vza /Na5exp(bma

exc), where ma
exc is the excess

chemical potential of speciea. The notation^¯&N1 ,N2 ,V,T

indicates the canonical average at fixed number of particles,
volume, and temperature.

So to calculateȳaa(r ) we need to introduce in the sys-
tem of Na1Nb particles labeled 1b ,...,Nb , 2a ,...,(N11)a

a test particle 1a placed a distancer from particle 2a and
calculate, at each Monte Carlo step, the interaction of this
particle with all the particles of the system except particle
2a .

We immediately realize that whenr 50 we must have

ȳaa~0!51, ~7!

since the configurations where particle 2a overlaps with
other particles of the system are forbidden. Moreover, by

FIG. 1. The first two graphs are Duh–Haymet plots~dots!, outside the hard core region, for the one component HS system~the lines show the behavior of
integral equation closures!. On the leftr50.650, on the rightr50.925.
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taking into account thatyab(r )5gab(r ) for r .Rab and from
the asymptotic value of the partial pair distribution functions
follows that

lim
r→`

ȳaa~r !5e2bma
exc

. ~8!

The unlike cavity functions can be obtained from the
following canonical average:

y12~r 1112
!5

Vz1

N1
ȳ12~r 1112

!

5
Vz1

N1
K expH 2bF (

i 2.1

N2

f12~r 11i 2
!

1 (
i 1.1

N111

f11~r 11i 1
!G J L

N1 ,N2 ,V,T

. ~9!

So to calculateȳ12(r ) we need to introduce in the system
of N11N2 particles labeled 12 ,...,N2 , 21 ,...,(N11)1 a test
particle 11 placed a distancer from particle 12 and calculate,

at each Monte Carlo step, the interaction of this particle with
all the particles of the system except particle 12 .

Now there is no simple argument to guess the contact
value of ȳ12. All we can say is that we must haveȳ12(0)
<1. At larger we still have

lim
r→`

ȳ12~r !5e2bm1
exc

. ~10!

B. Numerical implementation

Monte Carlo simulations were performed with a stan-
dard NVT Metropolis algorithm12 using N54000 particles.
Linked lists12 have been used to reduce the computational
cost. To calculate the partial pair distribution functions we
generally used 5.23108 Monte Carlo steps, where one step
corresponds to the attempt to move a single randomly chosen
particle, and incremented the histograms once every 20
34000 steps. To calculate the partial cavity functions we

FIG. 2. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! compared with some of the most common integral
equation theories~lines! for the equimolar binary mixture of AHS at two different densities~in the second and third plot only results at the highest density are
shown!. R1151, R1250.8, andR2250.6. The insets shows the portion of the bridge function outside the hard cores.
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used 1.63109 Monte Carlo steps and incremented the histo-
grams once every 234000 steps. The acceptance ratio was
adjusted to values between 10% and 40%.

The Monte Carlo simulation returned thegab(r ) over a
range not less than 8.125R11 for the densest system. In all the
studied cases, the pair distribution functions attained their
asymptotic value well inside the maximum distance they
were evaluated. Thus, it has been possible to obtain accurate
Fourier transforms of the total correlation functions@ ĥab(k)#
@it was necessary to cure the cusps at contact in the partial
pair distribution functions by adding to themH(Rab

2r )gab(Rab), H being the Heaviside step function, before
taking the Fourier transform and removing its analytical Fou-
rier transform afterwards#. To obtain the partial indirect cor-
relation functions we first calculated the partial direct corre-
lation functions@ ĉab(k)# using the Fourier transform of the
Ornstein–Zernike Eq.~2! and then we got the Fourier trans-
form of the indirect correlation functionsĝ i j (k)5ĥi j (k)
2 ĉi j (k) which is the transform of a continuous function in
real space and then is safe to transform back numerically to
obtaingab(r ).

FIG. 3. Cavity functions inside the hard core for the equimolar binary mix-
ture of AHS~at the same conditions as in Fig. 2 at the highest density!. The
plot shows the behavior of the functions defined in Eqs.~6! and~9! ~notice
the logarithmic scale on the ordinates!, the triangles denote the 22 function,
the open circles the 11 function, and the closed circle the 12 function.

FIG. 4. Bridge functionsBab(r ) for the equimolar binary mixture of AHS~at the same conditions as in Fig. 2 at the highest density!. The insets shows
magnifications of the regions just outside of the hard cores.
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III. NUMERICAL RESULTS

We carried on simulations on the following systems:~A!,
one component HS;~B!, equimolar binary mixture of AHS;
~C!, equimolar binary mixture of NAHS with equal like di-
ameters and negative nonadditivity;~D!, equimolar binary
mixture of NAHS with equal like diameters and positive
nonadditivity; and~E!, equimolar binary mixture of NAHS
with different like diameters. In all these cases we have
drawn the corresponding Duh–Haymet plots, i.e., we plot,
for each distance, the pairs (Bi j (r ),g i j (r )).

When we are outside the hard core the partial bridge
functions~4! reduces to

Bab~r !5 ln gab~r !2gab~r ! ~11!

and we can obtain the bridge functions directly from the pair
correlation functions solving the OZ Eq.~2! to get the partial
indirect correlation functionsgab .

To realize the Duh–Haymet plots when we are within
the hard core regions, we first calculated the cavity functions
ȳab as explained in Sec. II and then the bridge functions~up
to an additive constant, the excess chemical potentialbma

exc)
from their definition~4!. Estimating the excess chemical po-
tential from the long range behavior of the cavity functions
@see Eqs.~8! and ~10!# we were able to find the full bridge
functions. Since the cavity functions in proximity ofRab

becomes very small, they are subject to statistical errors. In
order to obtain smooth Duh–Haymet plots we needed to
smooth the cavity functions obtained from the simulation.
We did this by constructing the cubic smoothing spline
which has as small a second derivative as possible.

A. One component HS

We carried out two simulations atr1.0.650 ~with a
packing fraction of h5pr1R11

3 /650.340) and r1

.0.925 (h50.484), the former corresponding to an inter-
mediate density case and the latter to a liquid close to the
freezing point. In our simulations we useR11 as a unit of
length.

Inside the hard core, the bridge and the indirect correla-
tion functions are monotonic and, for the cases here consid-
ered, there are no nonlocalities in the Duh–Haymet plots
inside the core. Thus, to search for nonlocalities it is enough
to analyze results in the external region. The resulting curves
in the (B,g) plane corresponding to points outside the hard
core region are shown in Fig. 1. On the left the intermediate
density case and on the right the high density one. We see
that, as the density increases, the nonlocality becomes more
accentuated. Of course, the quality of a local approximation
does depend on the choice of the correlation functions used

FIG. 5. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with equal like diameters and negative nonadditivitya520.351, atr150.589.R115R2251 and
R1250.649. The insets shows the portion of the bridge function outside the hard cores.

FIG. 6. Cavity functions for the equimolar binary mixture of NAHS with
equal like diameters and negative nonadditivity~at the same conditions as in
Fig. 5!. The graph shows the behavior of the functions defined in Eqs.~6!
and ~9! ~notice the logarithmic scale on the ordinates!, the open circle de-
notes the like functions and the closed circle the unlike one.
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as independent variable: plotting the bridge function as a
function of the direct correlation function we observed the
opposite behavior.

In order to compare the computer simulation results with
the local approximateB(g) relations used in the integral
equations, we have plotted the curves corresponding to dif-
ferent closures: the hypernetted chain~HNC!:1

B~g!50, ~12!

the Percus–Yevick~PY!:1

B~g!5 log~11g!2g, ~13!

the Martynov Sarkisov~MS!,13 and its generalization by Bal-
lone, Pastore, Galli, and Gazzillo~BPGG!:14

B~g!5~11ag!1/a2g21, ~14!

~MS! corresponds toa52, in the BPGG generalizationa
could be used as state dependent parameter to enforce ther-
modynamic consistence, here a fixed value of 15/8 has been
used as suggested in~Ref. 14!, and the modified Verlet
~MV !:15

B~g!5
2g2

2@110.8g#
. ~15!

We can see that the best closures~MS, BPGG, and MV!,
although not passing through the simulation curve, tend to
follow its slope and curvature. When looking at Fig. 1 one
should also bear in mind that the values of the bridge func-

FIG. 7. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with equal like diameters and negative nonadditivity~at the same conditions as
in Fig. 5!. The insets shows magnifications of the regions just outside of the hard cores.

FIG. 8. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditivitya510.2, atr150.200.R115R2251 and
R1251.2. The insets shows the portion of the bridge function outside the hard cores.
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tion outside the hard core are not the most relevant for the
quality of the structural and thermodynamic results of the
closures.

B. Equimolar binary mixture of AHS

We carried out a simulation atr15r2.0.589@h
5p(r1R11

3 1r2R22
3 )/650.375# and r150.5. We choseR11

51, R1250.8, andR2250.6.
The results outside the hard core region are shown in the

insets of the plots of Fig. 2. There are non-localities in a
neighborhood of the origin which corresponds to the larger
region. These are more evident in the high density case.

The most interesting feature shown in the figure is the
difference between the curves at the two different densities.
If the hypothesis of closures defined by a unique function
B(g) would be exact data for different densities should col-
lapse into a unique curve in these plots. The data shown in
Figs. 1 and 2 indicate clearly that this is not strictly true.
However, at low and intermediate densities the quantitative
effect of the changing functional form is not dramatic. And
even at the highest liquid densities, the success of closures
such as MV, MS, or BPGG can be probably explained in
term of a higher sensitivity of the theory to localized~near
the contact! features of the bridge functions more than to the
behavior over the whole range of distances.

Inside the hard core region the Duh–Haymet plots do
not have nonlocalities. In Fig. 3 we show the results for the
cavity functionsȳab for the system at the highest density.
The plot for the unlike functions is more noisy than the plots
for the like functions becauseȳ12 being smaller thanȳaa for
a51, 2 is more subject to statistical error.

In Fig. 2 we show the full Duh–Haymet plots for the
system at the highest density, from the simulation~dots! and
from integral equation theories~lines!. The plots show how
the MV approximation is the best one for this system. The
unlike bridge function starts atr 50 close to the MV ap-
proximation, stays close to this approximation asr increases
and at some point have a smooth change in behavior and get
closer to the PY curve.

Figure 4 shows the full bridge functions as a function of
r for the system at the highest density. It is worth of notice
the almost flat region of the unlike bridge near the origin.

C. Equimolar binary mixture of NAHS: R11ÄR22 , aË0

We carried out a simulation atr15r2.0.573 (h
50.6). We chose R115R2251 and R1250.649 (a
520.351). These radii values would be suitable for a refer-
ence system to model correlation in molten NaCl.16

FIG. 9. Cavity functions for the equimolar binary mixture of NAHS with
equal like diameters and positive nonadditivity~at the same conditions as in
Fig. 8!. The graph shows the behavior of the functions defined in Eqs.~6!
and ~9! ~notice the logarithmic scale on the ordinates!, the open circle de-
notes the like functions, and the closed circle the unlike functions.

FIG. 10. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditivity~at the same conditions as
in Fig. 8!. The insets shows magnifications of the regions just outside of the hard cores.
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The results outside the hard core region are shown in the
insets of the plots of Fig. 5. There are nonlocalities in the
neighborhood of the origin corresponding to the larger re-
gion.

In Fig. 6 we show the results for the cavity functions
ȳab .

In Fig. 5 we show the full Duh–Haymet plots from the
Monte Carlo simulation~dots! and from the most common
integral equation theories~lines!. The approximation which
seems to be closer to the like bridge function is MV: only at
big r the bridge functions is well approximated by PY, MS,
BPGG, and MV. The unlike bridge function starts atr 50
close to the PY approximation but asr increases it has a
sudden change in behavior which displaces it away from all
the approximations. Inside the hard core region the Duh–
Haymet plots for the unlike functions exhibit significant non-
localities in correspondence with the non monotonic behav-
ior of the unlike cavity function~black dots in Fig. 6!.

Figure 7 shows the full bridge functions as a function of

r. The unlike bridge function shows oscillations in a neigh-
borhood of the origin.

D. Equimolar binary mixture of NAHS: R11ÄR22 , aÌ0

We carried out a simulation atr15r2.0.200 (h
50.209). We choseR115R2251 andR1251.2 (a510.2).
Notice that this system undergoes phase separation whenr
52r1.0.42.

The results outside the hard core region are shown in the
insets of the plots of Fig. 8. There are nonlocalities in a
neighborhood of the origin corresponding to large distances.

Also for this system, inside the hard core region the
Duh–Haymet plots for the unlike functions have nonlocali-
ties in a neighborhood ofr 50. These are smaller in extent
than the ones found for system C. In Fig. 9 we show the
results for the cavity functionsȳab .

In Fig. 8 we show the full Duh–Haymet plots from the
simulation~dots! and from the most common integral equa-

FIG. 11. Full Duh–Haymet plots obtained by the inversion of the Monte Carlo simulation data~dots! and by some of the most common integral equation
theories~lines! for the equimolar binary mixture of NAHS with different like diametersR1151 andR125R2250.6, atr150.589. The insets shows the portion
of the bridge function outside the hard cores.
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tions ~lines!. The approximations which seem to be closer to
the like bridge function is MV and BPGG even if there is
always a gap between the approximations and the simulation.
The unlike bridge function starts atr 50 far away from all
the approximations but asr increases it has a smooth change
in behavior approaching the BPGG curve.

Figure 10 shows the full bridge functions as a function
of r. Again, the unlike bridge function have an almost flat
behavior in a neighborhood of the origin.

E. Equimolar binary mixture of NAHS: R11ÅR22

We carried out a simulation atr15r2.0.589 (h
50.375). We choseR1151 andR125R2250.6 (a520.2).

The results outside the hard core region are shown in the
insets of the plots of Fig. 11. There are nonlocalities in a
neighborhood of the origin which corresponds to the bigr
region.

Inside the hard core region the Duh–Haymet plots have
no nonlocalities. In Fig. 12 we show the results for the cavity
functionsȳab .

FIG. 12. Cavity functions for the equimolar binary mixture of NAHS with
different like diameters~at the same conditions as in Fig. 11!. The graph
shows the behavior of the functions defined in Eqs.~6! and ~9! ~notice the
logarithmic scale on the ordinates!, the triangles denote the 22 function, the
open circles the 11 function, and the closed circle the 12 function.

FIG. 13. Bridge functionsBab(r ) for the equimolar binary mixture of NAHS with different like diameters~at the same conditions as in Fig. 11!. The insets
shows magnifications of the regions just outside of the hard cores.
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In Fig. 11 we show the full Duh–Haymet plots from the
simulation~dots! and from the most common integral equa-
tions ~lines!. The approximation which is closer to the 11
bridge function is the MV. The one that is closer to the 22
bridge function is the BPGG. The 12 bridge function starts at
r 50 far away from all the 5 approximations and asr in-
creases has a sudden change in behavior and starts following
the BPGG approximation.

Figure 13 shows the full bridge functions as a function
of r. The unlike bridge function shows again a qualitatively
different behavior near the origin.

IV. CONCLUSIONS

From our analysis it follows that the nonlocalities in the
function relationship between the bridge functions and the
indirect correlation functions may appear either outside of
the hard core regions or inside of it. While the nonlocalities
outside the hard core appear both in the like and in the unlike
functions, the ones inside the hard core appear only in the
unlike functions~see Fig. 5 and Fig. 8!, for the systems that
we have studied. Their appearance can be directly related to
the peculiar behavior of the unlike cavity correlation func-
tion inside the hard core.

As is shown by a comparison of the plots of Fig. 1 and
from Fig. 2 the nonlocalities become more accentuated as we
increase the coupling~the density! of the system. Nonethe-
less Fig. 8 shows that the nonlocalities may appear even in a
weakly coupled system~in this case symmetric NAHS with
positive non additivity!. Among the systems studied the one
which presents the worst nonlocalities is the equimolar sym-
metric NAHS with negative nonadditivity~see Fig. 5!. For
this system the Duh–Haymet plot for the unlike bridge func-
tion is nonlocal both in the hard core region~in a neighbor-
hood of r 50) and outside of it~at larger!.

We can conclude that the two hypothesis of a local func-
tion approximation for the bridge functionals of the indirect
correlation functions and the stronger hypothesis of unique
functional form independent on the state, are not strictly sup-
ported by the numerical data. For the one component system,
this finding is consistent with the observed density depen-
dence of the bridge function reported in Ref. 17. We observe
clear violations of both the assumptions increasing with the
density. This negative statement should be somewhat miti-
gated by realizing that the violations of the locality, in the

systems studied, are limited to the small and large distances
regions. The latter, corresponding to the region of the fast
vanishing of the bridge functions affect very little the ther-
modynamic and structural properties of the systems. The
former are presumably more important for the level of ther-
modynamic consistence of the theory but have small effect
on quality of the structural results. The well known success
of closures like MS, BPGG, and MV supports such point of
view.

From comparison with the simulation data in the cases
we have studied, we conclude that the best approximations
of the true hard sphere bridge functions are provided by the
MV and BPGG even if, especially in the unlike bridge func-
tions, there are a wide variety of characteristic behaviors
which are not captured by any of the most popular integral
equation approximations. In this respect, we feel that a final
comment on the local functional approximation in the case of
multicomponent systems is in order. Indeed, density func-
tional theory allows to say that the bridge functionBi j should
be a functional of all the pair correlation functions, not only
the (i , j ) one. Thus, we could have a function approximation
Bi j (g11(r ),g12(r ),g22(r )) which would be local in space but
not with respect to the components. At the best of our knowl-
edge, up to now no attempt has been done to explore this
additional freedom to improve the modeling of the bridge
functions in multicomponent systems.
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