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We study, using Monte Carlo simulations, the cavity and the bridge functions of various hard sphere
fluids: one component system, equimolar additive, and nonadditive binary mixtures. In particular,
we numerically check the assumption of local dependency of the bridge functions from the indirect
correlation functions, on which most of the existing integral equation theories hinge. We find that
this condition can be violated either in the region around the first and second neighbors shell, or
inside the hard core, for the systems here considered. The violations manifest themselves clearly in
the so-called Duh—Haymet plots of the bridge functions versus the indirect correlation functions and
become amplified as the coupling of the system increase20@ American Institute of Physics.
[DOI: 10.1063/1.1739392

I. INTRODUCTION the structural properties, in recent years interest has grown
toward using approximate integral equations to obtain ther-
modynamics and the phase diagrams of liquids and liquid
mixtures®
In particular, Kjellander and Sarmband Le& have de-
rived an approximate but useful formula for the chemical
potential of a fluid requiring only the knowledge of the cor-
relation functions at the thermodynamic state of interest.
1+h;(r)=exf — Bei;(r)+h;;(r)—ci;(r)+B;; ()] Their formula is based on two main approximations. The first
(1) is the same assumption from which integral equations are
derived, i.e., that the bridge functioi;(r) are local func-
tions of the corresponding indirect correlation functions. The
second stronger assumption is that the only dependence of
hij(r)zcij(rHZ Plf dr’ciy(r')hy([r=r"]), (2 the bridge functions from the thermodynamic state is through
the indirect correlation functions. Thus, the functional depen-
whereh;;(r) andc;;(r) are the(total) and direct correlation dence ofB;j(7ij) is the same for all the states.
functions for atomic pairs of specieéandj, p, is the number In this paper we want to investigate via direct numerical
density of thelth component angB=1/kT. The functions computer simulation the two approximations.
Bij(r), named bridge functions after their diagrammatic ~ Up to now, numerical studies of the bridge functions and
characterizatioharefunctionalsof the total correlation func-  of the accuracy of the local approximation have been limited
tions, i.e., their value at distancedepends on the values of to the case of one component systéhsr electrolytic
all the correlation functions at all distances. solutions® We feel that two-component systems deserve
The basic difficulty with Egs(1) and (2) is that we do  more interest for many reasong) there are strong indica-
not have an explicit and computationally efficient relationtions that the approximate universality of the bridge
betweenBij(r) and the correlation functions, so we have tofunction? is not valid in multicomponent systeméj) the
resort to approximations. The results of the last three decadgﬁase diagrams of multicomponent systems are richer and
of research have shown that it is possible to make progressore interesting than those of pure fluids, &iid it turns
by approximating the bridge functionai;(r) by functions  out that modeling the bridge functions for multicomponent
of the indirect correlation functions;;(r)=h;;j(r)—c;;(r)  systems is much more difficult than for pure systems.
(approximate closur¢sOnce we have an explicit form for We have studied, through Monte Carlo simulation, the
Bij(7ij(r)), the resulting integral Eqgl) and(2), although  bridge functions of a few systems of nonadditive hard
approximate, can provide excellent results for the statigpheres(NAHS) mixtures, including the limiting cases of
structure of liquids. Moreover, besides the original focus oradditive (AHS) mixtures and one component system. In par-
ticular we are interested in a direct check of the local hypoth-

A central problem in the theory of the static structure of
classical liquids is to find a simple and efficient way to ob-
tain the pair correlation functions from the interparticle
forces in pairwise interacting fluids. Exact statistical
mechanick? allows us to write the formal solution of such
problems as the coupled set of equations:

and

aE|ectronic mail: rfantoni@ts.infn.it esis for the functional relations between bridge and correla-
YElectronic mail: pastore@ts.infn.it tion functions in binary mixtures. To this aim we use the so
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called Duh—Haymet plots.These are plots of the partial the relationship between the partial bridge functions and the
bridge functionsB;; as a function of the partial indirect cor- partial indirect correlation functions within the hard cores,
relation functionsy;; . we need to calculate the partial cavity functions. There are
The paper is organized as follows: In Sec. Il we summaitwo distinct methods for calculating thefrthe one which
rize the equations we used to evaluate the cavity correlationses Henderson’s equatiSnand the direct simulation
functions from which the bridge functions can be easily ob-method of Torrie and Patéy.We decided to use the first
tained and we provide the relevant technical details of thenethod which is accurate at small
numerical calculations. In Sec. lll we present and discuss our For a binary mixture the like cavity functions can be

numerical results. obtained from the following canonical average:
Vz,__
Il. CALCULATION OF THE CAVITY Vaa(l12)= ~——Yaa(l12)
AND BRIDGE FUNCTIONS e’ Na o
Ny+1
A. Theory Vz, -
. . . :N_<exp{_ﬂ{ E ¢aa(rlaia)
The binary NAHS system is a fluid made of hard spheres a ia>2
of two species. One specie, here named 1, with dianfdter Np
and number density; and another speci@) with diameter + 2 ban(T i )} (6)
. . .. . . o~ ab\! 1.iy ’
R, and number density,, with a pair interaction potential ip=1 Ny Ny VT

that can be written as follows:
-R wherea, b=1, 2 with b#a, Fijy is the distance between

[oe]

bap(1)= f=Fab; 3) particle i of specie a and particlej of specie b, z,

0 r>Rap, =exp(Buy)/A® is the activity of specie, u, its chemical
whereR;,= (Ry1+ Ry)/2+ @, with a being the nonadditiv- Potential, and\ the de Broglie thermal wavelengtt, is the
ity parameter. We will also study various special cases as thé2lume, N, the number ofefartlcles of Spece so that the
one component system, and the binary mixture of additivérefactor Vz,/Na=exp(8ug), where ug is the excess
hard sphere¢AHS) @=0. We can rewrite Eq(1) to obtain ~ chemical potential of specia. The notation(--)n, n, v,

the partial bridge functions indicates the canonical average at fixed number of particles,
volume, and temperature.
Ban(1)=INYan(r) = van(r), ) So to calculatey,,(r) we need to introduce in the sys-
wherey,,(r) are the partial cavity functions tem of N,+ N, particles labeled {,...,N,, 25,...,(N+1),

a test particle laced a distance from particle 2, and
Yab(F)=Jan(1) X Bban(r) ] ®) calcula?e, at ea;cﬁ Monte Carlo step, thepinteract%)n of this
Here g;;(r)=1+h;;j(r) are the partial radial distribution particle with all the particles of the system except particle
functions. Notice that both the cavity functions and the indi-2, .
rect correlation functions are everywhere continuous, and so  We immediately realize that when=0 we must have
is the bridge. — _
In the region outside the hard cores, in a hard sphere Yaa(0)=1, @)
(HS) system, the cavity correlation functions coincide with since the configurations where particlg ®verlaps with
the pair distribution functiong);;(r). In order to determine other particles of the system are forbidden. Moreover, by
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FIG. 1. The first two graphs are Duh—Haymet pl@dsts, outside the hard core region, for the one component HS sydteniines show the behavior of
integral equation closurgsOn the leftp=0.650, on the righp=0.925.
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FIG. 2. Full Duh—Haymet plots obtained by the inversion of the Monte Carlo simulation(datg compared with some of the most common integral
equation theorieflines) for the equimolar binary mixture of AHS at two different densitigsthe second and third plot only results at the highest density are
shown. Ry;=1, R;,=0.8, andR,,=0.6. The insets shows the portion of the bridge function outside the hard cores.

taking into account that,,(r) =gap(r) for r>R,, and from  at each Monte Carlo step, the interaction of this particle with
the asymptotic value of the partial pair distribution functionsall the particles of the system except particle 1

follows that Now there is no simple argument to guess the contact
value ofy;,. All we can say is that we must hawg,(0)

R _ . exc
lim yaq.(r)=e"F#a . 8 <1. At larger we still have

r—o

The unlike cavity functions can be obtained from the

exc

following canonical average: lim y(r)=e A#1 . (10)
Vz; T
y12(r1112):N71y12(r1112)
Vz, N2 B. Numerical implementation
N N1<eXp{ _'BLZM ¢12(r11i2) Monte Carlo simulations were performed with a stan-
Nyl dard NVT Metropolis algorithrtf using N=4000 particles.

cost. To calculate the partial pair distribution functions we
generally used 5:210° Monte Carlo steps, where one step
So to calculatgy,(r) we need to introduce in the system corresponds to the attempt to move a single randomly chosen
of N1+ N, particles labeled 4,...,N,, 2,,...,(N+1), atest particle, and incremented the histograms once every 20
particle 1; placed a distancefrom particle 1, and calculate, X4000 steps. To calculate the partial cavity functions we

+ i2>1 $1a(ryi))

]> © Linked lists? have been used to reduce the computational
Ny N, VT
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used 1.6< 10° Monte Carlo steps and incremented the histo-
grams once every 24000 steps. The acceptance ratio was
adjusted to values between 10% and 40%.

The Monte Carlo simulation returned tigg,(r) over a
range not less than 8.1R%, for the densest system. In all the
studied cases, the pair distribution functions attained their
asymptotic value well inside the maximum distance they
were evaluated. Thus, it has been possible to obtain accurate
Fourier transforms of the total correlation functiditng ,(K) |
[it was necessary to cure the cusps at contact in the partial
pair distribution functions by adding to themd(R,,
—1)dapn(Rap), H being the Heaviside step function, before
taking the Fourier transform and removing its analytical Fou-
rier transform afterwardsTo obtain the partial indirect cor-
relation functions we first calculated the partial direct corre-
lation functions[ C,,(k)] using the Fourier transform of the
Ornstein—Zernike Eq.2) and then we got the Fourier trans-

FIG. 3. Cavity functions inside the hard core for the equimolar binary mix-form of the indirect correlation functioné,ij (k)= ﬁij (k)

ture of AHS(at the same conditions as in Fig. 2 at the highest denditye
plot shows the behavior of the functions defined in Es.and(9) (notice
the logarithmic scale on the ordinatethe triangles denote the 22 function,
the open circles the 11 function, and the closed circle the 12 function.

TT T T [ T 7T T T [T 7T T T [ r T 7T [7

0.0

—6ij(k) which is the transform of a continuous function in
real space and then is safe to transform back numerically to
obtain y4,(r).
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FIG. 4. Bridge functionB,,(r) for the equimolar binary mixture of AH®at the same conditions as in Fig. 2 at the highest densitye insets shows
magnifications of the regions just outside of the hard cores.
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FIG. 5. Full Duh—Haymet plots obtained by the inversion of the Monte Carlo simulation(dats and by some of the most common integral equation
theories(lines) for the equimolar binary mixture of NAHS with equal like diameters and negative nonadditivity0.351, atp;=0.589.R;;=R,,=1 and
R1,=0.649. The insets shows the portion of the bridge function outside the hard cores.

IIl. NUMERICAL RESULTS Bap(r) =N gap(r) = Yan(r) (12)

We carried on simulations on the following systert#s),
one component HSB), equimolar binary mixture of AHS;
(C), equimolar binary mixture of NAHS with equal like di-

ameters and negative nonadditivit§p), equimolar binary To realize the Duh—Haymet plots when we are within

mixture of NAHS with equal like diameters and positive e harg core regions, we first calculated the cavity functions
nonadditivity; and(E), equimolar binary mixture of NAHS Vs as explained in Sec. Il and then the bridge functiaus
with different like diameters. In all these cases we have, 5, additive constant, the excess chemical potefie})
drawn the corresponding Duh—Haymet plots, i.e., we plotgqm their definition(4). Estimating the excess chemical po-
for each distance, the Pa'rgiﬁ(r)’yii(r))' _ . tential from the long range behavior of the cavity functions
When we are outside the hard core the partial b”dg‘fsee Eqgs(8) and (10)] we were able to find the full bridge
functions(4) reduces to functions. Since the cavity functions in proximity &,
becomes very small, they are subject to statistical errors. In

100 ] order to obtain smooth Duh—Haymet plots we needed to
smooth the cavity functions obtained from the simulation.
We did this by constructing the cubic smoothing spline
° which has as small a second derivative as possible.

and we can obtain the bridge functions directly from the pair
correlation functions solving the OZ E(R) to get the partial
indirect correlation functionsg,y,.

| ° J A. One component HS

. We carried out two simulations agi;=0.650 (with a
-1 - - . .
N o ] packing fraction of #z= wlefl/6=O.34Q) and P1
i =0.925 (y=0.484), the former corresponding to an inter-
] mediate density case and the latter to a liquid close to the
- . freezing point. In our simulations we us$®; as a unit of
- ° . length.
Inside the hard core, the bridge and the indirect correla-
1072 |- ° = tion functions are monotonic and, for the cases here consid-
r veett’ '"-.._ ° . ered, there are no nonlocalities in the Duh—Haymet plots
et * ° o inside the core. Thus, to search for nonlocalities it is enough
YA S S Y Y S B to analyze results in the external region. The resulting curves
02 04 . 66 o8 10 in the (B,y) plane corresponding to points outside the hard
core region are shown in Fig. 1. On the left the intermediate
FIG. 6. Cavity functions for the equimolar binary mixture of NAHS with density case and on the right the high density one. We see
equal like diameters and negative nonadditivaythe same conditions as in that. as the density increases. the nonlocality becomes more
Fig. 5. The graph shows the behavior of the functions defined in Ejs. ' y T y . .
and (9) (notice the logarithmic scale on the ordinatethe open circle de- accentuated. Of course, .the quality of a |OFa| apprquaﬂon
notes the like functions and the closed circle the unlike one. does depend on the choice of the correlation functions used

¥.:(r).7,5(r)
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FIG. 7. Bridge function®B,,(r) for the equimolar binary mixture of NAHS with equal like diameters and negative nonaddiiithe same conditions as
in Fig. 5). The insets shows magnifications of the regions just outside of the hard cores.

as independent variable: plotting the bridge function as a B(y)=(1+ay)Y*—y—1, (14)

function of the direct correlation function we observed the ) o
(MS) corresponds tax=2, in the BPGG generalizatior

opposite behavior.

In order to compare the computer simulation results withculd be used as state dependent parameter to enforce ther-
the local approximate(y) relations used in the integral modynamic conS|sten_ce, here a fixed value of_;5/8 has been
equations, we have plotted the curves corresponding to di1’='sed_1%S suggested iRef. 14, and the modified Verlet
ferent closures: the hypernetted chéiNC):* (MV):

2
B(y)=0, (12) Y
. L BY)= 311708y (15
the Percus—YevickPY):
B We can see that the best closui®4S, BPGG, and MY,
B(y)=log(1+v) =7, (13 although not passing through the simulation curve, tend to

follow its slope and curvature. When looking at Fig. 1 one

the Martynov SarkisoyMS),'2 and its generalization by Bal-
should also bear in mind that the values of the bridge func-

lone, Pastore, Galli, and GazzillBPGG:1*

L R A e o T T
0.0 | q 5 - 0.0 i
| v = 0.00 i
_ 3 3] » , \ 1]
E E \ 1
I Y :_ _: 4 ~ %_
X % E ) ] ] h
-1.0 TN %-0.20 F BN = -0.05 jr s
| R Bt N -0.5 - TR
= ‘-.‘,\ % 05 1.0 E] i -0.2 0.0 02 0.4]
m L ‘.:' §\ E m A
| B \\;\\_ ] - ‘:\'\ p
] 7 HNC
-2.0 |- ——— HNC % - F pY -
.................. PY : i _10 | e MS |
------ Ms s ] ———- BPGG
———- BPGG % I MV 1
........... MV "~," \ ) 1 L S i
! L Ly o by P PRI EPRRTEPI SVRTLTIN A, SU SR B
0.0 2.0 4.0 6.0 8.0 0.0 1.0 2.0 3.0 4.0 5.0

Y12

FIG. 8. Full Duh—Haymet plots obtained by the inversion of the Monte Carlo simulation(dets. and by some of the most common integral equation
theories(lines) for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditvity-0.2, atp,;=0.200.R;;=R,,=1 and

R1,=1.2. The insets shows the portion of the bridge function outside the hard cores.
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FIG. 9. Cavity functions for the equimolar binary mixture of NAHS with
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Fig. 8. The graph shows the behavior of the functions defined in Ejs.
and (9) (notice the logarithmic scale on the ordinafethe open circle de-
notes the like functions, and the closed circle the unlike functions.

tion outside the hard core are not the most relevant for th

quality of the structural and thermodynamic results of the

closures.

B. Equimolar binary mixture of AHS
We carried out a simulation afp;=p,=0.589

=7(p1R3,+ p,R3,)/6=0.375 and p;=0.5. We choseR;;
= 1, R12:0.8, andR22: 0.6.

Closure relations in hard sphere fluids 10687

The most interesting feature shown in the figure is the
difference between the curves at the two different densities.
If the hypothesis of closures defined by a unique function
B(y) would be exact data for different densities should col-
lapse into a unique curve in these plots. The data shown in
Figs. 1 and 2 indicate clearly that this is not strictly true.
However, at low and intermediate densities the quantitative
effect of the changing functional form is not dramatic. And
even at the highest liquid densities, the success of closures
such as MV, MS, or BPGG can be probably explained in
term of a higher sensitivity of the theory to localizékar
the contadtfeatures of the bridge functions more than to the
behavior over the whole range of distances.

Inside the hard core region the Duh—Haymet plots do
not have nonlocalities. In Fig. 3 we show the results for the
cavity functionsy,, for the system at the highest density.
The plot for the unlike functions is more noisy than the plots
for the like functions becausg,, being smaller thary,, for
a=1, 2 is more subject to statistical error.

In Fig. 2 we show the full Duh—Haymet plots for the
system at the highest density, from the simulatidats and
from integral equation theorigéines). The plots show how
the MV approximation is the best one for this system. The
unlike bridge function starts at=0 close to the MV ap-
groximation, stays close to this approximationrdacreases
and at some point have a smooth change in behavior and get
closer to the PY curve.

Figure 4 shows the full bridge functions as a function of
r for the system at the highest density. It is worth of notice
the almost flat region of the unlike bridge near the origin.

C. Equimolar binary mixture of NAHS: R;1=R,,, a<0

The results outside the hard core region are shown inthe We carried out a simulation ap;=p,=0.573

insets of the plots of Fig. 2. There are non-localities in a=0.6).

neighborhood of the origin which corresponds to the large
region. These are more evident in the high density case.
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FIG. 10. Bridge function®,,(r) for the equimolar binary mixture of NAHS with equal like diameters and positive nonadditatitthe same conditions as

We chose R;;1=R,,=1 and R{,=0.649 («
—0.351). These radii values would be suitable for a refer-
ence system to model correlation in molten N&TI.
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in Fig. 8). The insets shows magnifications of the regions just outside of the hard cores.
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FIG. 11. Full Duh—Haymet plots obtained by the inversion of the Monte Carlo simulation(diatsx and by some of the most common integral equation
theories(lines) for the equimolar binary mixture of NAHS with different like diamet&g=1 andR;,=R,,=0.6, atp;=0.589. The insets shows the portion
of the bridge function outside the hard cores.

The results outside the hard core region are shown in the: The unlike bridge function shows oscillations in a neigh-
insets of the plots of Fig. 5. There are nonlocalities in theborhood of the origin.
neighborhood of the origin corresponding to the large-
gion.

In Fig. 6 we show the results for the cavity functions
Yab- We carried out a simulation afp;=p,=0.200 (5

In Fig. 5 we show the full Duh—Haymet plots from the =0.209). We chos®;;=R,»=1 andR;,=1.2 (= +0.2).
Monte Carlo simulationdoty and from the most common Notice that this system undergoes phase separation when
integral equation theoriedines). The approximation which =2p;>0.42.
seems to be closer to the like bridge function is MV: only at ~ The results outside the hard core region are shown in the
big r the bridge functions is well approximated by PY, MS, insets of the plots of Fig. 8. There are nonlocalities in a
BPGG, and MV. The unlike bridge function startsrat 0 neighborhood of the origin corresponding to large distances.
close to the PY approximation but asincreases it has a Also for this system, inside the hard core region the
sudden change in behavior which displaces it away from alDuh—Haymet plots for the unlike functions have nonlocali-
the approximations. Inside the hard core region the Duh-ies in a neighborhood af=0. These are smaller in extent
Haymet plots for the unlike functions exhibit significant non- than the ones found for system C. In Fig. 9 we show the
localities in correspondence with the non monotonic behavresults for the cavity functiong,y, .
ior of the unlike cavity function(black dots in Fig. & In Fig. 8 we show the full Duh—Haymet plots from the

Figure 7 shows the full bridge functions as a function of simulation(doty and from the most common integral equa-

D. Equimolar binary mixture of NAHS:  R;;=R,,, a>0
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FIG. 12. Cavity functions for the equimolar binary mixture of NAHS with

different like diametergat the same conditions as in Fig.)1The graph

shows the behavior of the functions defined in E@$.and (9) (notice the
logarithmic scale on the ordinadeshe triangles denote the 22 function, the
open circles the 11 function, and the closed circle the 12 function.
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Closure relations in hard sphere fluids 10689
tions (lines). The approximations which seem to be closer to
the like bridge function is MV and BPGG even if there is
always a gap between the approximations and the simulation.
The unlike bridge function starts at=0 far away from all
the approximations but asincreases it has a smooth change
in behavior approaching the BPGG curve.

Figure 10 shows the full bridge functions as a function
of r. Again, the unlike bridge function have an almost flat
behavior in a neighborhood of the origin.

E. Equimolar binary mixture of NAHS: R1# R,

We carried out a simulation ap;=p,=0.589 (5
=0.375). We chos®;;=1 andR;,=R,,=0.6 (a=—0.2).

The results outside the hard core region are shown in the
insets of the plots of Fig. 11. There are nonlocalities in a
neighborhood of the origin which corresponds to the big
region.

Inside the hard core region the Duh—Haymet plots have
no nonlocalities. In Fig. 12 we show the results for the cavity
functionsy,p,.
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FIG. 13. Bridge function8,;,(r) for the equimolar binary mixture of NAHS with different like diametéas the same conditions as in Fig.)1The insets
shows magnifications of the regions just outside of the hard cores.
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In Fig. 11 we show the full Duh—Haymet plots from the systems studied, are limited to the small and large distances
simulation(dotg and from the most common integral equa- regions. The latter, corresponding to the region of the fast
tions (lines). The approximation which is closer to the 11 vanishing of the bridge functions affect very little the ther-
bridge function is the MV. The one that is closer to the 22modynamic and structural properties of the systems. The
bridge function is the BPGG. The 12 bridge function starts aformer are presumably more important for the level of ther-
r=0 far away from all the 5 approximations and mgn-  modynamic consistence of the theory but have small effect
creases has a sudden change in behavior and starts followiog quality of the structural results. The well known success
the BPGG approximation. of closures like MS, BPGG, and MV supports such point of

Figure 13 shows the full bridge functions as a functionview.
of r. The unlike bridge function shows again a qualitatively From comparison with the simulation data in the cases

different behavior near the origin. we have studied, we conclude that the best approximations
of the true hard sphere bridge functions are provided by the
IV. CONCLUSIONS MV and BPGG even if, especially in the unlike bridge func-

From our analysis it follows that the nonlocalities in the tions, there are a wide variety of characteristic behaviors

function relationship between the bridge functions and théNh'd:. are not cgptutr'ed b% a?h){ of the n:ost p]?pll“";]r |tntefg'jrall
indirect correlation functions may appear either outside of quation approximations. in this respect, we feef that a fina
the hard core regions or inside of it. While the nonlocalitiesc™Mment on the local functional approximation in the case of

outside the hard core appear both in the like and in the un”képulticomponent systems s in orde_r. Indeed, density func-
functions, the ones inside the hard core appear only in th onal theo.ry allows to say that the bru_jge funct.Brjl should
unlike functions(see Fig. 5 and Fig.)8for the systems that e a functional of all the pair correlation functions, not only

we have studied. Their appearance can be directly related € (.j) one. Thus, we cour:fd Eave %fgncitmnlapproxmztlon
the peculiar behavior of the unlike cavity correlation func- Bii (711(r), 7121), v2:(r)) which would be local in space but
tion inside the hard core. not with respect to the components. At the best of our knowl-

As is shown by a comparison of the plots of Fig. 1 ang€dge, up to now no attempt has been done to explore this

from Fig. 2 the nonlocalities become more accentuated as V@ddit?onal_freedo_m to improve the modeling of the bridge
increase the couplingthe density of the system. Nonethe- unctions in multicomponent systems.

less Fig. 8 shows that the nonlocalities may appear even in a

weakly coupled systertin this case symmetric NAHS with
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