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Generating functionals, consistency, and uniqueness in the integral
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We discuss and illustrate through numerical examples the relations between generating functionals,
thermodynamic consistencin particular the virial-free-energy opeand uniqueness of the solution

in the integral equation theory of liquids. We propose an approach for deriving closures
automatically satisfying such characteristics. Results from a first exploration of this program are
presented and discussed. ZD03 American Institute of Physic§DOI: 10.1063/1.1590642

I. INTRODUCTION formula and the thermodynamic expression for the pressure.
_ ] o o However, this limited consistency is not enough to guarantee
Integral equation theorig$ETs) of liquid-state statistical 5 ynique and faithful description of the phase diagram. Apart
mechanics are valuable tools for studying structural and thefom the problem of the remaining inconsistencies, the de-
mod;inzamlc properties of pairwise interacting fluid sys-geriptions of the critical points and spinodal lines are seri-
tems.“ Many of these approximations to the exact relat|on0us|y inadequate.
between pair potential and pair correlation functions have Extensive work on HNGQRefs. 12—1% showed that in
been proposei_)in the last half century, starting from the pioy,, .o of 4 true spinodal line, it is more appropriate to de-
neir'n%ﬂgrkﬁ. hto the most re;lntﬁd and moder? appro>§|— scribe the numerical results as due to a region in the thermo-
mation which may approach the accuracy ot compu erdynamic plane where no real solution of the integral equation

simulation Wlt.h a negllglble_ comput_atlonal COSt'. . exists. In particular, Bellont showed that the disappearance
The functional method in statistical mecharipsovides . o . :
of the solution originates from a branching point where two

the most general and sound starting point to introduce IETS .. X ) . .
Solutions merge, instead of from a line of diverging com-

as approximations of the exact functional relations, and it is

the classical statistical mechanics counterpart of the quantur‘?]res.s'b'“.ty' Thus, we have Q|rect evujence that the_ HNC ap-
density functional theory. proximation may have multiple solutions, at least in part of

Notwithstanding the success of present IETs to describéhe phas_e_ dlag_ram.
the structure of simple one-component systems, considerable ErT;plgmaI _|r_npr(_)vements on HNC have been pro-
work is still devoted to derive improved approximations posed* providing in many cases excellent results for one-
which could accurately describe the thermodynamics as welfomponent simple fluids. However, although reduced, the
Also applications to nonsimple or multicomponent systemdn€rmodynamic inconsistency problem remains and the
are still subject of current studies. mult|ple—.solut|on problem |s_complletelly untouched.

Actually, the description of thermodynamics is one weak !N this work we start an investigation of a new approach
point of IET approaches: reasonable and apparently harmled@ IETs directly addressing the two points of uniqueness of
approximations to the potential-correlation relations usuallythe solution and thermodynamic consistency. The basic idea
result in a dramatica”y inconsistent thermodynamics Wherés to constrain the search for new closures within the class of
many, if not all, among the exact sum rules derived fromgenerating functionals which are strictly convex free-energy

statistical mechanics, are violated. functionals, thus enforcing the virial-energy consistency as
The problem of thermodynamic inconsistency—i.e., thewell as the uniqueness of the solution.
inequivalence between different routes to thermodynamics—  In particular, in the present paper we try to answer the

actually plagues the IET approach to the point that the degre®llowing questions:(i) Does at least one strictly convex

of inconsistency between different formulas for the sameree-energy functional of the pair correlation function exist?

guantity is used as an intrinsic measurement of the quality ofii) What is the nature of the resulting spinodal lilifeany)?

a closure. (iii) What is the quality of the resulting thermodynamic and
In the past, some discussion of the thermodynamic constructural results®v) Does the simultaneous requirement of

sistency appeared in the literature. The hypernetted chaiconsistency and uniqueness automatically provide improved

(HNC) approximation was recognized as a closure directlyresults?

derivable from an approximation for the free-energy  As we will show, we have a positive answer fGy, a

functional! thus exhibiting consistency between the virial thorough and interesting characterization fioy, some inter-

esting indications fofiii ), and a partly negative answer for

dElectronic mail: rfantoni@ts.infn.it (iv). o ) )
YElectronic mail: pastore@ts.infn.it However, we can show that it is possible to exploit the
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control provided by the generating functional approach taion: thermodynamic consistency between energy and virial
easily generate new closures and we feel our procedure coutdutes to the thermodynamics and uniqueness of the solution.

be the basis of a more systematic approach to IETSs.

Indeed, once we get the generating functioQaldue to

In Sec. Il we recall the connections between closuresthe approximations induced by the closure, there is no guar-
generating functionals, thermodynamic consistency, andntee that its value at the extremum is an excess free energy.
uniqueness of solutions and we illustrate them in the welldn order to be a free energy, the functional should satisfy the
known case of HNC approximation. In Sec. Ill we introduce condition

two straightforward extensions of the HNC approximation
intended to cure its problems. In Sec. IV numerical results ~ 9Q
are presented and discussed. In Sec. V we show two possible &¢(r)

improvements of the closures studied.

IIl. THERMODYNAMIC CONSISTENCY AND
UNIQUENESS OF THE SOLUTION OF INTEGRAL
EQUATIONS

Since the work by Olivares and McQuarff is known

p
=590, @

whereg(r)=h(r)+1 is the pair distribution function.

Even if this condition is not new and mention to it is
present in the literatur® we discuss it in Appendix B as
well as its consequences on the thermodynamic consistency
between the virial pressure and the density derivative of the
free energy.

the general method to obtain the generating functional whose Another issue where the generating functional approach

extremum with respect to variations of the dir¢cfr)] or

total [h(r)] correlation functions results in the closure rela-

tion, provided the Ornstein—Zernik®©Z) equation is satis-
fied.
For example, if we have a closure of the form

p>c(r)=P{h(r),B4(r)}, 1
where ¢(r) is the pair interaction potential an#t is an ar-
bitrary function, the functional

1 dk
Q[h(r),Be¢(r)]= %( f (ZT)s{Ph(k)_m[l_Ph(k)]}

—f dr h(r)

><fldt\lf{th(r),ﬁ¢(r)}+con39 (2)
0

is such that the extremum condition
oQ
sh(r) 0 ®)

is equivalent to

p?h(r)="P{h(r),B4(r)}

+pf h([r=r'DW{h(r"),Be(r")}dr’.  (4)

Olivares and McQuarrie also showed how to find the

is useful is the problem of multiple solutions of the integral
equations? In particular, the analysis of the convexity prop-
erties of the generating functional is a very powerful
tool 1718

Let us illustrate this technique in the case of HNC clo-
sure. It is well knowA"'® that the HNC equation, with
closure

c(r)=h(r)—In[g(r)e’*"], ®
can be derived from the variational principle

ii[—(rh)] =0, C)
where

Fh]=Fozh]+ Funclhl, (10
with

dk . "
Fodhl= | sstphto-IL+phtol), (1
f'HNc[h]=P2f dr{1+g(r)(In[g(r)ef*"]-1)
—h?(r)/2}. (11b

Let us callF(r) the extremum ofF, solution of the

generating functional if the closure is expressed in the fornyariational principle(9). It can be showrisee Appendix B

p*h(r)=W{c(r),Bp(r)}. (5)

that, within an additive constanE[F]/(Z,Bp) is the excess
Helmholtz free energy per particle of the liquid. This ensures

In Appendix A we discuss the extension of their methodthermodynamic consistency between the route to the pres-

to the case of a closure written as

pZe(r)=T{y(r),B¢4(r)}, ©)

wherey(r)=h(r)—c(r) is the indirect correlation function.

sure going through the partial derivative of the free energy
and the one going through the virial theordsee Appen-

dix B). In addition, it allows us to get a closed expression
for the excess chemical potential without further approxima-

Notice that most of the modern closures correspond to thisions!®?° This feature is highly desirable for applications of

last case.

The possibility of translating the original integral equa-

IETs to the determination of the phase diagrams.
Moreover, if we can prove thak, defined on some con-

tion into an extremum problem allows us to get an easyex set of trial correlation functiond., is a strictly convex
control on two important characteristics of the approxima-functional, then we know that if a solution to E) exists,
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it corresponds to a minimum and is unique. A functiofak
strictly convex if, for ally(r) e D, andy(r) # 0, we have

2
5 71hl (12)

R. Fantoni and G. Pastore

our investigations to simple modifications of the HNC func-
tional. As we will discuss later, such a choice is certainly not
optimal. However, we can learn enough to consider the ap-
proach worthwhile of further investigations and we feel the

A:f y(r)Wy(r’) drdr’'>0.

We calculate the second functional derivatives as follows:

results are interesting in order to reveal more details about
the characteristics of the solutions of the highly nonlinear

IETs.
2
oAt _ 0[S onry L
Sh(r)sh(r’) (2m)® [1+ ph(K)]?
(139 A. HNC/H2 approximation
82 Funch] 1 We want to modify the HNC closure in order to have an
szza(r—r’)(ﬁ—l> (13b integral equation with a generating functional which is

strictly convex without having to restrict its definition do-

Recalling that the static structure fac&fk) =1+ ph(k), we ~ main. We choose, as our modified HNENC/H2) closure??

find, for A, c(r)=h(r)~In[g(r)]— Be(r)— ah?(r), 17
dk  §%(k) ( 1 ) ith be determined. Th | ]
Al 2_ +f d 2 —— 14 with o a parameter to be determined. € new closure gen
P (2m)® S*(k) "y g(r) a4 erating functional is

Now, the most interesting results would be to show the strict
convexity of the HNC functional over the convex set of all

fHchHz[h]=p2f dr{1+g(r)(n[g(r)ef¥]—1)
the admissible pair correlation functiopall the h(r)=-1

and properly decaying to zero at large distdnce —h?(r)/2+ ah3(r)/3}. (18)
However, this is not the case for HNC. It has not beenjts second functional derivative with respectttds

possible to show the positive definiteness of Elgl) and it 5

has been showhthat in some region of the thermodynamic 6" Frncinal h] =p28(r—r") 1 —1+2ah(r)]. (19

plane the HNC approximation does exhibit multiple solu- oh(r)oh(r’) g(r) '

tions. .
Recalling thath=g—1 andg(r)>0 for all r, we see that,
The best we can do is to obtain a more limited result. a=1?2 9 9(r)

Callingg;=sum(r) (g;>1 is the height of the first peak of
the pair distribution functionand using Parseval theorem, 1
we find

Al 2>f dk ‘Z(k)( L 1y 1)

=) emd NS T e

from which we deduce thaf>0 on the following set of
functions:

D={h(r) [0<S(k)< g1 /(91— 1)Vk}. (16)

We conclude thatF defined on any convex set of functions
D.CD is strictly convex. Near the triple point we are sure
we are out from such set since the first peak of the pai
distribution function for the Lennard-Jones fluid gg=3
(Ref. 21, so thatyg,/(g:—1)=1.2. The first peak of the
static structure factor is also close to 3. Then we are not
inside D and the HNC approximation may have multiple
solutions'?

Instead, if we are in the weak-coupling regime, the pre-
vious conditions tell us that there is a range where the branch In the same spirit as in Sec. Il A we can try to add a
of solutions going to the perfect gas limit is unique and quiteterm h* in the HNC/H2 closure

isolated from other solutions. c(r)=h(r)—In[g(r)] = B(r)— ah?(r)— yh3(r), (21)

with @ and y parameters to be determined. We call this ap-
groximation HNC/H3. The closure generating functional is

(20

Then Fynonz IS @ convex functional, and sincgy7 is un-
changed and strictly convegee Appendix ¢ their sum, the
generating functional of the integral equation, is strictly con-
Vex.

Moreover,{ Foz h]+ Funcmzlhl}(2B8p) continues to
be the excess Helmholtz free energy per particle of the liquid
since Eq.(7) holds (see Appendix B

We have then an integral equation which is both thermo-
Pynamically consistentthe pressure calculated from the
virial theorem coincides with that one calculated from the
Helmholtz free energyand with a solution which, when it
Xists, is unique.

(19

B. HNC/H3 approximation

IIl. EXTENSIONS OF THE HNC APPROXIMATION

The generating functional approach can be used in a sy
tematic way to look for better closures. We think that this _ ZJ' BN _
way we can obtain a less empirical search method for im- Funcmslh]=p” | dril+g(r)(n[g(r)e™ ] =1)
proving closures. 2 3 4

In the following we report some preliminary analysis we h“(r)/2:+ ah™(r)/3+ yh™(r)/4}.
have done. As a first test of our program, we have restrictetts second functional derivative with respectttas

(22)
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S°F. [h] 1 TABLE I. We compare various thermodynamic quantities as obtained from
Lm’ :ng(r —r')|—- 1+2ah(r)+3‘yh2(r) the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 clo-
oh(r)sh(r’) a(r) sures, for the inverse 12th-power fluid at the freezing poit @.813).
1-g(r) U®9Y(Ne) is the excess internal energy per partigg®®)/p— 1 the excess
=p25(r—l") {1—2ag(r)+3yg(r) virial pressure, and. and B, are the bulk moduli calculated from the

g(r) compressibility and the virial equations, respectively.
X[1—g(r)]}. (23 Closure U®*Y(Ne) BPW/p—1 B B,
. : . . . MC 2.675 18.7 - 72.7

I_n order to have the rlght—hand side of 'thIS expression posi- o (.~ 603 2626 18 36 69.78 70.13

tive for g>0 the only choice we have is to set=1/2. In HNC 3.009 21.04 4528 8043

this way, HNC/H2 3.200 22.37 52.66 87.26
(1—9)[1—2a9+379(1—g)]=(1—9)2(1+3yg),( )
24

_ _ _ ~ Al Inverse power potentials
and we see thafyyc/n3 iS a convex functional if we addi-

tionally choosey>—1[3sum(r)].

Once agaif Fo h]+ Funonuslh1H(2Bp) is the excess
Helmholtz free energy per particle of the liquid and the ther- $(r)= E(
modynamic consistency virial free energy is ensured.

The general form of the inverse power potential is

n

ag
R (29)

where 3<n<. For this class of fluids the thermodynamics
depends only on the dimensionless coupling parameter

_ 3 3/
IV. NUMERICAL RESULTS z=(pa°IV2)(Be)™". (29)

) In this paper we choose to fix* =1 so that Eq(29) gives
To solve numerically the OZ plus closure system of NON-4e relation betweers and T* .

linear equations we used Zerah’ s algoritirand Fourier We performed our calculations on tie=12, 6, and 4

transforms were done using fast Fourier transform. In theyiqs at the freezing point. We compared three kind of clo-
code we always work with adimensional thermodynamlcsures. the one of Rogers and Yo@h¢RY) with thermody-

i * * — 3 * — 3
variablesT* =1/(Be), p* =po”, andP* =Po°/e, wheres o mic consistency virial compressibility and known to be
and e are the characteristic length and characteristic energ%ry close to the simulation results, the hypernetted chain

of the system, respectively. We always used 1024 grid pointélosure, and the HNC/H2 described in Sec. IIlA. In each

and a step sizérz0.0?Sr. » case we compared our data with the Monte C&NIL) re-
The thermodynamic quantities were calculated accordéu'tS of Hansen and Schif.

ing to the statistical mechanics formulas for the excess inter-

nal energy per particle 1. Inverse 12th-power potential
The freezing point for this fluid is &= 0.813. The RYa
UeXC/Nzprfw¢(r)g(r)r2dr' (25) parameter to achieve thermodynamic consistency at this
0 ’ value ofz is 0.603. Notice that we expressin units of o

and not of a=(3/4mp)*?® as in the original Rogers and
Young' s papef®
= de(r) In Table I_we compare various the_rmodynamic q.u.antities

BP’lp—1=— §7Tﬂp d g(r)r3dr; (26)  (the excess internal energy per particle, excess virial pres-
0 r sure, bulk modu)i obtained from the MC simulation of
Hansen and Shiff® the RY, HNC, and HNC/H2 closures.

In Fig. 1 we compare the MC, HNC, and HNC/H2 re-
sults for the pair distribution function.

the excess virial pressure

the bulk modulus calculated from the compressibility equa
tion,

B 1
:E = —S( k=0)’ (27) 2. Inverse 6th-power potential

The freezing point for this fluid is a&=1.54. The RYa
parameter to achieve thermodynamic consistency at this
value ofz is 1.209.

where yt is the isothermal compressibility; and the bulk
modulus calculated from the virial equation,

JgPY In Table Il we compare various thermodynamic quanti-
B,=8 EP ties (the excess internal energy per particle, excess virial
P pressure, bulk modyliobtained from the MC simulation of

For the calculation 0B, onceg(r) andc(r) had been cal- Hansen and Shiff} the RY, HNC, and HNC/H2 closures.
culated, Lado’s scheme for Fourier transfoffngas used to ]

determineag(k)/dp. Even if slow, this allows us to explic- 3- Inverse 4th-power potential

itly calculate and later invert the coefficients matrix of the The freezing point for this fluid is a&=3.92. The RYa
linear system of equations which enters the calculation oparameter to achieve thermodynamic consistency at this
ag(k)/ap. value ofz is 1.794.
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T Y TABLE Ill. We compare various thermodynamic quantities as obtained
from the MC simulation of Hansen and Shiff, the Rivotice that the bulk
moduli were not given in the Rogers and Young’s paper and the value of the
virial pressure as reported in our table was not corrected to take into account
the long-range nature of the potenfjghe HNC and HNC/H2 closures, for

> the inverse 4th-power fluid at the freezing point<(3.92).U®*9(Ne) is the

2F ° 5 9 excess internal energy per particeP(*)/p—1 the excess virial pressure,
andB. andB,, are the bulk moduli calculated from the compressibility and
the virial equations, respectively.

7]

* MC
+ + HNC
o HNC/H2

S8
[ ]

g2(x)

Closure U®Y(Ne) BPWIp—1 B, B

o]

<
1} % MC 8.233 107.7 - 156
* RY (a=1.794 8.001 104.7 2501 242.9
HNC 8.047 105.3 2233 2442
° HNC/H2 8.068 105.5 2270 2577

0 1 2 3

X=1/G According to the discussion of Sec. Il, the loss of solution for

the HNC approximation can be traced back to the loss of
FIG. 1. Comparison of the Monte Car(dC), HNC, and HNC/H2 results ~ Strict convexity of the generating functiorfdlindeed, using
for the pair distribution function of the inverse 12th-power fluid at the HNC approxima’[ion, we Computed the bulk modulus
=0.813. from the compressibility equatidd, on several isotherms as
a function of the density. At low temperatures we found that
In Table Il we compare various thermodynamic quanti-"’}t both high density and low density we were unable. to con-
ties (the excess internal energy per particle, excess virialinue the isotherm at low values &:. Zerah' s algorithm
pressure, bulk moduliobtained from the MC simulation of either could not get to convergence or it would converge at a

Hansen and Shifi® the RY. HNC. and HNC/H2 closures.  nonphysical solutiorfwith a pole in the structure factor at
In Fig. 2 we éompare, the MC. HNC. and HNC/H2 re- Some finite wave vectdr). Since HNC/H2 has, by construc-

sults for the pair distribution function. tion, an always strictly convex generating functional, we ex-
_ _ pect it to be able to approximate a spinodal litieere should
B. Spinodal line be no termination ling
In this subsection we study a pair potential with a mini- !N Fig. 3 we show the behavior @ on several iso-

mum. In particular we chose the Lennard-Jones potential therms as a function of density, calculated with the HNC/H2
1 5 approximation. We see that now there are no termination

a _(f ) (30) points. B, never becomes exactly zero, and the low-

r r) | temperature isotherms develop a bump in the intermediate-

wheree and o are positive parameters. The critical point for density region. Thg_same plot for the bulk modulus calcu-

this fluid is af’ T* =1.3120+0.0007, p* =0.316+0.001 lated from the virial pressureB, shows that at low

andP* =0 1279t000006 e ' temperatures this bulk modulus indeed becomes zero along
c y ' : - the isotherms both at high and low densities.

Integral equations usually fail to have a solution at low In Fia. 4 th i blotted ¢ . f th
temperature and intermediate densities: i.e., in the two- n Fig. 4 the lpresr?ure 'Sf P ?]tteHNacs:/Haz unction of the
phases unstable region of the phase diagram. In particular ﬂensny on several isot erms orthe ; apprOX|mat|pn.
is well known that the HNC approximation is unable to re- Apart from the fact that we find negative pressures, the iso-
produce thespinodal line the locus of points of infinite com- therms have a van der Waals—like behavior.

pressibility in the phase diagrathThis is due to the loss of The graphica}l analysis .Of the pressure plotted asa func-
I.Lon of the chemical potential shows that the coexistence of

$(r)=4e

solution as one approaches the unstable region on an ist- 0 h ints where th it
therm from high or from low densities. The line of loss of 1€ WO phasegpoints where the curve crosses itsésf pos-

H i * * _
solution, in the phase diagram, is called teemination line sible and is lost l_aetwee _.1'1 andT*=1.2. There gen
erally are two points of coexistence.

TABLE II. We compare various thermodynamic quantities as obtained fromV. IMPROVING THE CLOSURES

the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 clo- . e .
sures, for the inverse 6th-power fluid at the freezing point 1.54). The numerical results for HNC/H2 exhibit Interesting

U®*9(Ne) is the excess internal energy per parti@d@®®/p—1 the excess features as far as the coexistence region is concerned but
virial pressure, and, and B, are the bulk moduli calculated from the show unambiguously a worst agreement with the MC struc-
compressibility and the virial equations, respectively. tural data in correspondence with a marginal improvement in
the thermodynamics.

Closure U®*Y(Ne) BPWp—1 B, By . . e
We feel that the main problem is the difficulty of an
RY 'V'Cl 200 j-‘l)sl’g 3398333 Lo 111101-14 accurate description of the bridge functions in terms of pow-
a=1. , , , , ) i - . S
HNG 4235 40.18 84.02 137 €S of the pair correlation funct!on. Recent mvesnganons_ of
HNC/H2 4.283 4064 8829 1158 Improved closures seem to point to the indirect correlation

function y(r) or some renormalized version of it as the best
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3 L] L] L)
* MC
bt + HNC
e o HNC/H2
t+
2k + -
S g pTEL4
— ° % eI T.=13
x ] T,=12
=0 ® e 04 pTALL -
. T,=1.0 --
al e T/=0.9
° ] 0.6 pT,=08
T,=0.7 ~—e-
- —
Dwer 08 T =0.6 - . . . . .
$ 0 01 02 03 04 05 06 07 08
< D*
0 .—————-. A L L
0 1 2 3 FIG. 4. Behavior of the pressure of the Lennard-Jones fluid, on several
X=1/G isotherms as a function of the density for the HNC/H2 approximation.

we have that our HNC/H2 approximation amounts to setting
G(r)=0. Rosenfeld and Ashcréftproposed thatB(r)
should be essentially the same for all potentials). We

starting point for progress. However, before moving to morenc:cW Ta!;e a ;:mllar %rot;))gdsal f]:)r ﬂ? frl{mct:ﬁon, and we \'/tw”f
complex relations or functional dependences, we have exXTer to It as thepseudobridge funcharin the same spirit o

plored two possible directions for improving the HNC/H2 the RH_NC approan_ahon of Lad8 we will approximate
closure. In the first approach we have tried to follow thec_;(r) with the G fu_nct|on of ashort-rang(s_referencaz poten-
reference hypernetted chaiRHNC) approach by Ladé? In tial ¢q(r). Assuming known the pr_opertles of the reference
the second we have explored the possibilities of optimizatior?yStem' we can calculate thi function as follows:

FIG. 2. Comparison of the Monte Car{MC), HNC, and HNC/H2 results
for the pair distribution function of the inverse 4th-power fluidzat3.92.

offered by the numerical coefficient of the cubic term in the
generating functional.

A. Pseudobridge functions for HNC  /H2

From the graphical analysis of the pair distribution func-
tion it is known! thatg(r) may be written as

g(r)=exd —Be(r)+y(r)+B(r)], 31

where y(r)=h(r)—c(r) is the sum of all the series-type
diagrams and(r) the sum of bridge-type diagrams. If we

1
Go(r) =In[go(r)e??] = yo(r) + Shi(r). (33

The reference HNC/HZRHNC/H2) approximation is then

1
g(r)=exp( —Bo(r)+y(r)— Ehz(r>+Go(r> . (39

An expression for the free-energy functional can be ob-
tainedturning onthe potentiakp(r) in two stages: first, from
the noninteracting state to the reference potersiglr) and
then from there to the full potentiab(r). To this end we

take

write

d(r; Mo, N1) =Ngoho(r) +N1A (1), (39

1
Y
B(r)= 2h (1) +G(r), (32) with A (r)= ¢(r) — ¢o(r). Following the same steps as in
Ref. 7 we obtain, for the excess free energy per patrticle,
0.5 ' fexe=f,+f,+ Q)+ Af,, (36)
IT = . .
045 F g where the first two terms were already encountered in
!T i
04} TR . Sec. Il
-
"1 T Bti=p [ dr{a+grngnes®]-1)
0.3 B T;kzg_s 1 2p
T,=0.7
= 0B [0 —h2(r)/2+h¥(r) 6}, (37)
2 F P
0015 f—ljdk A(k)—In[1+ ph(k 38
;)1 e ﬁz—z W{P()—n[ ph(k)1}. (38)
00.5 I 4;". ‘ The third term is assumed known:
Sl 1 1 39(r;X\o,0)
0 = 0)__ ) IRATOE)
. 06 07 08 ﬁfg)——zpf dffo d)\OG(r’)\O’O)a—AO
0*
= B(FO— £ —1L); (39

FIG. 3. Behavior ofB. of the Lennard-Jones fluid, on several isotherms as

a function of the density for the HNC/H2 approximation. here,f(®) is the excess free energy per particle of the refer-
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ence system anti”),f{") are defined as in Eqé37), (38) for 3 F . ' 3
the reference potential and its corresponding correlation a®

functions. The last term is ¢ MD

oA © HNC/H2

(Fi1hy) Fod o o HNC/H3 (y=—0.1)
8 A HNC/H3 (y=—0.203)

Afs= ! fdflde AN 79 40
BAfz= 5P rol(r"l)Tl'()

According to our proposalG is insensitive to a change in
potential from¢, to ¢. We may then approximate this last
term as follows: 20

—
o

—
on

1
pAty==5p [ drGo(nlg(n—go(r)] @

Now that we have the free energy we may consider it as
a functional of bothh(r) and Gy(r) and take its variation
with respect to these functions. We find 00,7 1.7

FIG. 5. Comparison of the pair distribution function of a Lennard-Jones
fluid at p*=0.85 andT* =0.719, computed from the molecular dynamic
1 (MD) simulation of Verlet, the HNC/H2 approximation, and the HNC/H3
—Gg(r)}sh(r)— EPJ dr[g(r)—go(r)]16Gy(r). approximation. For HNC/H3 we present results obtained setfing-0.1
(when the generating functional of the approximation is still strictly copvex
(42) and y=—0.203(which gives the best fit possible to the simulation data but
does not ensure the strict convexity of the generating functional

It follows that the free energy is minimized when both the
RHNC/H2 closurd Eq. (34)] is satisfied and when the con-

B5fe>(°=%pf dr{c(r)—h(r)+h?(r)/2+In[g(r)e’*"]

straint tion, the approximation HNC/H3 withy=—0.203(at lower
values ofy Zerah's algorithm would fail to convergeand
J dr[g(r)—go(r)]6Gy(r)=0 (43)  the approximation HNC/H3 withy=—0.1 (when the gener-

ating functional of HNC/H3 is still strictly convexAs we
can see HNC/H3 fits the simulation data better than HNC/H2
even if the first peak is still slightly displaced to the left of
the simulation data, a well-known problem of the HNC
pproximatiorf
The best results are given by HNC/H3 wijl+=—0.203.
e that the HNC/H3 generating functional at this value of
v is not strictly convexstrict convexity is lost fory<—1/9).
The first peak of the static structure factor ikat=6.75 and
‘has a magnitude of 2.41, a quite low value for a liquid near
the triple point. We have calculated the pressure and the in-
ternal energy. We foundB8P/p=3.87 and U®*Y(Ne¢)=
—5.72 [very close to the HNC result@P/p=3.12 and
qyeXC/(Ne)z—S.87] to be compared with the simulation
results® 0.36 and—6.12, respectively. The bulk moduli are
dGo(r) B.=11.74 andB,=36.61 which shows that at the chosen
J drfg(r)=go(r)]—; —=0. (44 value of y we do not have the thermodynamic consistency

H ither the hard-soh dobridae funct virial compressibility and we do not improve on HNC incon-
owever, neither the hard-sphere pseudobriage IUNClions Nfgiency(using HNC we findB.=7.09 andB,=32.72).
some empirical attempt to model the unknown function via a

Yukawa function provided useful results.

is fulfilled.

Taking the second functional derivative B¢ with re-
spect toh(r) we find that also this free energy is a strictly
convex functional of the total correlation function. This a
property was lacking in the RHNC theory and constitutes the
main feature of the RHNC/H2 closure. As already stressed ir&lot
Sec. lll A it ensures that if a solution to the integral equation
exists it has to be unique.

The constraint, as for RHNC, gives a certain thermody
namic consistency to the theofyee Ref. V. If we choose a
hard sphere reference potentiaj(r)= ¢o(r;o) which de-
pends on the length scatg the optimum values of the pa-
rameters that makes the generating functional a free ener
can be determined by the constraf#B) which becomes

VI. CONCLUSIONS

In this paper we have analyzed the relations between
generating functionals, thermodynamic consistency, and

For y=0 HNC/H3 reduces to HNC/H2. Far>0 the first  uniqueness of the solution of the integral equations of liquid-
peak of the pair distribution function is dumped with respectstate theory. We think that the requirement of deriving from a
to the one of the pair distribution function calculated with free energy and the uniqueness of the solution are two im-
HNC/H2. Fory<O0 the first peak increases giving in general portant ingredients to enforce in the quest for better closures.
a better fit to the simulation data. The former requirement is of course crucial to get virial-

In Fig. 5 we compare the pair distribution function of the energy consistency. But it is also important to get integral
Lennard-Jones fluid near its triple point, calculated with aequations able to provide a closed formula for the chemical
molecular dynamic simulatioff, the HNC/H2 approxima- potential without additional approximations. This last issue

B. Optimized HNC /H3 approximation
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looks highly desirable for applications of IET to the determi- APPENDIX A: GENERATING FUNCTIONALS OF vy
nation of phase diagrams. The latter is certainly a useful

constraint from the numerical point of view but it is also a _ _ - )
very strong condition, probably able to avoid some ncmmtegral equation use is made of the auxiliary functig(m)
=h(r)—c(r). Suppose that the closure relation can be writ-

physical behavior in the coexistence region, although this
point would deserve further investigation. Most of the exist-1€N s
ing c!osures fail to satisfy the condi_tio_n of uniqueness of the p2c(r)=—T{y(r)}, (A1)
solution. Among them, only the optimized random phase ap-
proximation by Andersen and Chandféf® satisfies both where W is a local function of the functiony and has a
constraints although they were not used in the original deridependence on the value of the pair potential not explicitly
vation of the approximation. One obvious question isshown.
whether the enforcement of these constraints automatically We want to translate the integral equation into a varia-
results in improved closures. tional principle involving functionals ofy(r). Then we in-
In this work, we have started an exploration of the capatroduce a closure function&f [ y] such that
bilities of the combined requirement of consistency and
uniqueness, starting with simple modifications to the HNC 6Fcl ] —W{y(r)} (A2)
closure, corresponding to the addition of a square and a cubic ~ 8¥()
power ofh(r) in the HNC functional. We found a couple of
approximationgHNC/H2 and HNC/H3, which have built in
the virial-free-energy thermodynamic consistency and have
unique solutiop. ' 8Fozd vl
We numerically tested these closures on inverse power 5. (7™ =P c(r). (A3)
and the Lennard-Jones fluid. From the tests on the inverse-
power potential fluids one can see that the HNC/H2 approxiThen when both the closure and the OZ relations are satis-
mation is comparable to HNC for the thermodynamic quan{ied, the functionalF= F;+ Foz . is stationary with respect
tities and performs worse than RY and even HNC forto variations ofy(r): i.e.,
structural properties. The tests on the Lennard-Jones fluid
revealed that this approximation does not suffer from the 671 7] _ (Ad)
presence of a termination ling@resent in HNC and almost oy(r)
all the existing closurgsThis allowed us to follow isotherms _ i o
from the low-density to the high-density region, and this be-ThIS is the variational p.rlnC|pIe sought. L
havior would be very useful in the study of the phase coex- Now, we want to find7oz,c. The OZ equation irk
istence. However, the thermodynamic results show only ghace s
Vn\;(z)arrgei}nal improvement on HNC and the structure is definitely  ,a2() + p3(k)&(k) — (k) =0. (A5)
Our trials to improve HNC/H2 in the same spirit of the When we solve it foilc we find two solutions
modified HNC approaches did not succeed. We feel that the R _ _
main reason is in the difficulty of modeling the real bridge  —T=\I'?+4r
functions through a polynomial in the functidr{r). In this c= 2 (AB)
respect, approaches based on generating functionals depend-
ing on the indirect correlation function(r) look more  wherelI'(k)=p¥%(k) is always positive since
promising but we have not tried them yet.
Much better results for the structure are found with . R h2 h2
HNC/H3 as is shown in Fig. 5. However, probably for the — I'=p*hé=p? =P
same reasons just discussed, one has to give up to have an 1+ph Sk

approximation with a strictly convex generating functional gy peing the liquid static structure factor which is positive
dependln_g onh(r). T_he thermodynamics r_eproduceq bY definite for allk. Sincet(k) is a function which oscillates

HNC/H.3 is not yet satisfactory: due to the slight Ief_t shift of 5.5und 0, wheré is negative we have to choose the solution
the main peak of thg(r), the calculated pressure misses the,yi, the minus sign, where it is positive the one with the plus
simulation result. Nonetheless, the presence of the free pgign |n particular, if the isothermal compressibility of the

rametery in HNC/H3 leaves open the possibility of impos- liquid y7 is smaller than the one of the ideal gag, we
ing the thermodynamic consistency virial compressibility. If hove that

the value of the parameter needed to have the consistency is

bigger than—1/[3sum(r)], then we would have an approxi- X$

mation which is completely thermodynamically consistent @(0)=—(1—X—><0, (A8)
and have a unique solution. This strategy may eventually T

lead us to discover that the price we have to pay to have and we have to start with the minus sign.

completely thermodynamically consistent approximation is  The functional we are looking for is théeee Eq(30) in
the loss of strict convexity of the generating functional. Ref. 15, with the constant set equal to Zero

Often in the numerical solution of the OZ plus closure

and an OZ functionalFoz o[ v] such that, wherc(r) and
g(r) satisfy the OZ equation, we have

(A7)
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1 dk p .\, SBA
foz,c[y]=fodtf dr v(”J—z(zW) ¢ SBe(r)

X[ —tT(K) +s.(K) VE2T2(K) + 4T (K)],  (A9) _
Evaluating this expression on the correlation functioso-

Wheresc(k) is +.1 whené(k)=0 and —1 when€(k)<0. _lution of the OZ plus closure system of equations, which is
Rearranging the integrals and making the change of variablg, axtremum ford. we find

y=tf‘ we find

SBA | sh(r’) p

A She =590,
[h].p.B f Sh(r')| 5 OBB(r) 2 50

: _apA_
for(k)dy[—w se(K)Vy?+4y] SB¢(r)

Then we can write

_P=
d =59(n). (B5)

1
-7:02,(:[7]: Ef (2

k .
E (h.p.B

ar
dk N
= J' (27)3{— F2/4+ Sc(k)

X ((L+T/2)V(1+T/2)2—1

Cin[1+ P21+ T22-1]).  (AL0) +D(hLp.B). (86)

with D a functional independent @b. Changing variables to
adimensional ones,=r* p~ %3 and using Eq(B5) we find

opA

[hl.p.8

ﬁA([F],w],p,/s):f d

If the closure relation has the form

pZh(r)=—T{y(n)}, (Al1)

— 1
we can derive the corresponding functional using the same BA([h*1.[¢].p.B)= Ef dr*g*(r*)Be(r*p~13)
procedure. The final result is a function@hz [ y] which
diﬁer; from. Eq.(A10) for a plus sign in front of the first +D([h*],p.B), (B7)
term in the integral.

However, by examining their second functional deriva-where we defined new distribution functiong* (r*)
tives, we notice that bottFo, [y] and Fozn[y] are not  =g(r*p ). If D has no explicit dependence @n then
certainly convex or concave. Thus, any check of the convexone readily finds
ity properties of generating functionals of th€r) function

should be done on the full functional. IBAD*1.[¢].p.8)
p p
p — gk - -
APPENDIX B: THERMODYNAMIC CONSISTENCY =- gf dr*'g*(r*)Be' (r*p Mo p=43
For a homogeneous liquid interacting through a pair po- p
tential ¢(r), the Helmholtz free energy per particle, can =— Ef drg(r)Be’(r)r=pBP9p, (B8)
be considered a functional ap. Indeed, in the canonical
ensemble, one has where again we used the fact thdthas an extremum for
Bt 1= Bt h=h. We used a prime to denote a derivative with respect to
the argument, an@¢*°is the excess pressure of the liquid.
1 1 1 If D has no explicit dependence ¢h we also find
Nln(wfexr{ BE;; ¢(fij)}df1 drN)! B
a A h* 1 1 1 —_—

- BA( jﬁw] p.B) =§f 4G (1) = USIN,
where f, is the free energy per particle of the ideal gas (B9)
(¢=0) andV is the volume of the liquid. Taking the func- oxc s _
tional derivative with respect tB¢(r) one finds whereU®™ is the excess internal energy.

I_f D has no Explicit dependence on bogh and p,
BT 4] = Bg(r)_ (B2) D([h*]1,p,B)=D([h*]), we conclude from Eqs(B8) and
ope(r) 2 (B9) that
Imagine that we found a functionz([ h],[ ¢1,p,8) that AP 1L[].p.8) = £ p. B) + const, (B10)

has an extremum for those correlation functions that solve
the OZ and the closure system of equations. Suppose furthgf,erefexcis the excess free energy per particle of the fluid.

that such functional has the property Under these circumstances we see from @BB) that we
SBA  p have thermodynamic consistency between the route to the
W: Eg(r)' (B3) pressure going through the partial derivative of the free en-
ergy and the route to the pressure going through the virial
which can be rewritten more explicitly as follows: theorem.
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APPENDIX C: STRICT CONVEXITY OF Fph]

It can be proved that the functional

dk . .
foz[h]=fW{ph(k)—ln[lwh(k)]}, (Cy
defined on the convex set
Dc={h(r)|S(k)>0 Vk}, (C2)
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