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Generating functionals, consistency, and uniqueness in the integral
equation theory of liquids

R. Fantonia) and G. Pastoreb)
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Costiera 11, 34014 Trieste, Italy

~Received 21 April 2003; accepted 19 May 2003!

We discuss and illustrate through numerical examples the relations between generating functionals,
thermodynamic consistency~in particular the virial-free-energy one!, and uniqueness of the solution
in the integral equation theory of liquids. We propose an approach for deriving closures
automatically satisfying such characteristics. Results from a first exploration of this program are
presented and discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1590642#
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I. INTRODUCTION

Integral equation theories~IETs! of liquid-state statistical
mechanics are valuable tools for studying structural and t
modynamic properties of pairwise interacting fluid sy
tems.1,2 Many of these approximations to the exact relati
between pair potential and pair correlation functions ha
been proposed in the last half century, starting from the p
neering works3–5 to the most refined and modern approx
mations6–10 which may approach the accuracy of compu
simulation with a negligible computational cost.

The functional method in statistical mechanics1 provides
the most general and sound starting point to introduce I
as approximations of the exact functional relations, and i
the classical statistical mechanics counterpart of the quan
density functional theory.

Notwithstanding the success of present IETs to desc
the structure of simple one-component systems, consider
work is still devoted to derive improved approximatio
which could accurately describe the thermodynamics as w
Also applications to nonsimple or multicomponent syste
are still subject of current studies.

Actually, the description of thermodynamics is one we
point of IET approaches: reasonable and apparently harm
approximations to the potential-correlation relations usua
result in a dramatically inconsistent thermodynamics wh
many, if not all, among the exact sum rules derived fro
statistical mechanics, are violated.

The problem of thermodynamic inconsistency—i.e., t
inequivalence between different routes to thermodynamic
actually plagues the IET approach to the point that the deg
of inconsistency between different formulas for the sa
quantity is used as an intrinsic measurement of the qualit
a closure.

In the past, some discussion of the thermodynamic c
sistency appeared in the literature. The hypernetted c
~HNC! approximation was recognized as a closure direc
derivable from an approximation for the free-ener
functional,11 thus exhibiting consistency between the vir

a!Electronic mail: rfantoni@ts.infn.it
b!Electronic mail: pastore@ts.infn.it
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formula and the thermodynamic expression for the press
However, this limited consistency is not enough to guaran
a unique and faithful description of the phase diagram. Ap
from the problem of the remaining inconsistencies, the
scriptions of the critical points and spinodal lines are se
ously inadequate.

Extensive work on HNC~Refs. 12–14! showed that in
place of a true spinodal line, it is more appropriate to d
scribe the numerical results as due to a region in the ther
dynamic plane where no real solution of the integral equat
exists. In particular, Belloni12 showed that the disappearan
of the solution originates from a branching point where tw
solutions merge, instead of from a line of diverging com
pressibility. Thus, we have direct evidence that the HNC
proximation may have multiple solutions, at least in part
the phase diagram.

Empirical improvements on HNC have been pr
posed6,9,10providing in many cases excellent results for on
component simple fluids. However, although reduced,
thermodynamic inconsistency problem remains and
multiple-solution problem is completely untouched.

In this work we start an investigation of a new approa
to IETs directly addressing the two points of uniqueness
the solution and thermodynamic consistency. The basic i
is to constrain the search for new closures within the clas
generating functionals which are strictly convex free-ene
functionals, thus enforcing the virial-energy consistency
well as the uniqueness of the solution.

In particular, in the present paper we try to answer
following questions:~i! Does at least one strictly conve
free-energy functional of the pair correlation function exis
~ii ! What is the nature of the resulting spinodal line~if any!?
~iii ! What is the quality of the resulting thermodynamic a
structural results?~iv! Does the simultaneous requirement
consistency and uniqueness automatically provide impro
results?

As we will show, we have a positive answer for~i!, a
thorough and interesting characterization for~ii !, some inter-
esting indications for~iii !, and a partly negative answer fo
~iv!.

However, we can show that it is possible to exploit t
0 © 2003 American Institute of Physics
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control provided by the generating functional approach
easily generate new closures and we feel our procedure c
be the basis of a more systematic approach to IETs.

In Sec. II we recall the connections between closur
generating functionals, thermodynamic consistency,
uniqueness of solutions and we illustrate them in the w
known case of HNC approximation. In Sec. III we introdu
two straightforward extensions of the HNC approximati
intended to cure its problems. In Sec. IV numerical resu
are presented and discussed. In Sec. V we show two pos
improvements of the closures studied.

II. THERMODYNAMIC CONSISTENCY AND
UNIQUENESS OF THE SOLUTION OF INTEGRAL
EQUATIONS

Since the work by Olivares and McQuarrie,15 it is known
the general method to obtain the generating functional wh
extremum with respect to variations of the direct@c(r )# or
total @h(r )# correlation functions results in the closure re
tion, provided the Ornstein–Zernike~OZ! equation is satis-
fied.

For example, if we have a closure of the form

r2c~r !5C$h~r !,bf~r !%, ~1!

wheref(r ) is the pair interaction potential andC is an ar-
bitrary function, the functional

Q@h~r !,bf~r !#5
1

2br S E dk

~2p!3 $rh~k!2 ln@12rh~k!#%

2E dr h~r !

3E
0

1

dt C$th~r !,bf~r !%1constD ~2!

is such that the extremum condition

dQ

dh~r !
50 ~3!

is equivalent to

r2h~r !5C$h~r !,bf~r !%

1rE h~ ur2r 8u!C$h~r 8!,bf~r 8!% dr 8. ~4!

Olivares and McQuarrie also showed how to find t
generating functional if the closure is expressed in the fo

r2h~r !5C$c~r !,bf~r !%. ~5!

In Appendix A we discuss the extension of their meth
to the case of a closure written as

r2c~r !5C$g~r !,bf~r !%, ~6!

whereg(r )5h(r )2c(r ) is the indirect correlation function
Notice that most of the modern closures correspond to
last case.

The possibility of translating the original integral equ
tion into an extremum problem allows us to get an ea
control on two important characteristics of the approxim
Downloaded 20 Aug 2003 to 140.105.16.64. Redistribution subject to A
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tion: thermodynamic consistency between energy and v
routes to the thermodynamics and uniqueness of the solu

Indeed, once we get the generating functionalQ, due to
the approximations induced by the closure, there is no g
antee that its value at the extremum is an excess free en
In order to be a free energy, the functional should satisfy
condition

dQ

df~r !
5

r

2
g~r !, ~7!

whereg(r )5h(r )11 is the pair distribution function.
Even if this condition is not new and mention to it

present in the literature,16 we discuss it in Appendix B as
well as its consequences on the thermodynamic consiste
between the virial pressure and the density derivative of
free energy.

Another issue where the generating functional appro
is useful is the problem of multiple solutions of the integr
equations.12 In particular, the analysis of the convexity prop
erties of the generating functional is a very power
tool.17,18

Let us illustrate this technique in the case of HNC c
sure. It is well known11,15 that the HNC equation, with
closure

c~r !5h~r !2 ln@g~r !ebf(r )#, ~8!

can be derived from the variational principle

dF@h#

dh~r !
50, ~9!

where

F@h#5FOZ@h#1FHNC@h#, ~10!

with

FOZ@h#5E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%, ~11a!

FHNC@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/2%. ~11b!

Let us call h̄(r ) the extremum ofF, solution of the
variational principle~9!. It can be shown~see Appendix B!
that, within an additive constant,F@ h̄#/(2br) is the excess
Helmholtz free energy per particle of the liquid. This ensu
thermodynamic consistency between the route to the p
sure going through the partial derivative of the free ene
and the one going through the virial theorem~see Appen-
dix B!. In addition, it allows us to get a closed expressi
for the excess chemical potential without further approxim
tions.19,20 This feature is highly desirable for applications
IETs to the determination of the phase diagrams.

Moreover, if we can prove thatF, defined on some con
vex set of trial correlation functionsDc , is a strictly convex
functional, then we know that if a solution to Eq.~9! exists,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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it corresponds to a minimum and is unique. A functionalF is
strictly convex if, for ally(r )PDc andy(r )Þ0, we have

A5E y~r !
d2F@h#

dh~r !dh~r 8!
y~r 8! dr dr 8.0. ~12!

We calculate the second functional derivatives as follows

d2FOZ@h#

dh~r !dh~r 8!
5r2E dk

~2p!3
e2 ik•(r1r8)

1

@11rĥ~k!#2
,

~13a!

d2FHNC@h#

dh~r !dh~r 8!
5r2d~r2r 8!S 1

g~r !
21D . ~13b!

Recalling that the static structure factorS(k)511rĥ(k), we
find, for A,

A/r25E dk

~2p!3

ŷ2~k!

S2~k!
1E dr y2~r !S 1

g~r !
21D . ~14!

Now, the most interesting results would be to show the st
convexity of the HNC functional over the convex set of
the admissible pair correlation functions@all the h(r )>21
and properly decaying to zero at large distance#.

However, this is not the case for HNC. It has not be
possible to show the positive definiteness of Eq.~14! and it
has been shown12 that in some region of the thermodynam
plane the HNC approximation does exhibit multiple so
tions.

The best we can do is to obtain a more limited res
Calling g15supg(r ) (g1.1 is the height of the first peak o
the pair distribution function! and using Parseval theorem
we find

A/r2.E dk

~2p!3 ŷ2~k!S 1

S2~k!
211

1

g1
D , ~15!

from which we deduce thatA.0 on the following set of
functions:

D5$h~r ! u0,S~k!,Ag1 /~g121!;k%. ~16!

We conclude thatF defined on any convex set of function
Dc,D is strictly convex. Near the triple point we are su
we are out from such set since the first peak of the p
distribution function for the Lennard-Jones fluid isg1.3
~Ref. 21!, so thatAg1 /(g121).1.2. The first peak of the
static structure factor is also close to 3. Then we are
inside D and the HNC approximation may have multip
solutions.12

Instead, if we are in the weak-coupling regime, the p
vious conditions tell us that there is a range where the bra
of solutions going to the perfect gas limit is unique and qu
isolated from other solutions.

III. EXTENSIONS OF THE HNC APPROXIMATION

The generating functional approach can be used in a
tematic way to look for better closures. We think that th
way we can obtain a less empirical search method for
proving closures.

In the following we report some preliminary analysis w
have done. As a first test of our program, we have restric
Downloaded 20 Aug 2003 to 140.105.16.64. Redistribution subject to A
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our investigations to simple modifications of the HNC fun
tional. As we will discuss later, such a choice is certainly n
optimal. However, we can learn enough to consider the
proach worthwhile of further investigations and we feel t
results are interesting in order to reveal more details ab
the characteristics of the solutions of the highly nonline
IETs.

A. HNCÕH2 approximation

We want to modify the HNC closure in order to have
integral equation with a generating functional which
strictly convex without having to restrict its definition do
main. We choose, as our modified HNC~HNC/H2! closure,22

c~r !5h~r !2 ln@g~r !#2bf~r !2ah2~r !, ~17!

with a a parameter to be determined. The new closure g
erating functional is

FHNC/H2@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21ah3~r !/3%. ~18!

Its second functional derivative with respect toh is

d2FHNC/H2@h#

dh~r !dh~r 8!
5r2d~r2r 8!F 1

g~r !
2112ah~r !G . ~19!

Recalling thath5g21 andg(r ).0 for all r , we see that,
for a51/2,

1

g
2112ah5

~12g!2

g
>0 ;g. ~20!

ThenFHNC/H2 is a convex functional, and sinceFOZ is un-
changed and strictly convex~see Appendix C!, their sum, the
generating functional of the integral equation, is strictly co
vex.

Moreover, $FOZ@ h̄#1FHNC/H2@ h̄#%/(2br) continues to
be the excess Helmholtz free energy per particle of the liq
since Eq.~7! holds ~see Appendix B!.

We have then an integral equation which is both therm
dynamically consistent~the pressure calculated from th
virial theorem coincides with that one calculated from t
Helmholtz free energy! and with a solution which, when i
exists, is unique.

B. HNCÕH3 approximation

In the same spirit as in Sec. III A we can try to add
term h3 in the HNC/H2 closure

c~r !5h~r !2 ln@g~r !#2bf~r !2ah2~r !2gh3~r !, ~21!

with a andg parameters to be determined. We call this a
proximation HNC/H3. The closure generating functional i

FHNC/H3@h#5r2E dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21ah3~r !/31gh4~r !/4%. ~22!

Its second functional derivative with respect toh is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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d2FHNC/H3@h#

dh~r !dh~r 8!
5r2d~r2r 8!F 1

g~r !
2112ah~r !13gh2~r !G

5r2d~r2r 8!
12g~r !

g~r !
$122ag~r !13gg~r !

3@12g~r !#%. ~23!

In order to have the right-hand side of this expression p
tive for g.0 the only choice we have is to seta51/2. In
this way,

~12g!@122ag13gg~12g!#5~12g!2~113gg!,
~24!

and we see thatFHNC/H3 is a convex functional if we addi
tionally chooseg.21/@3supg(r )#.

Once again$FOZ@ h̄#1FHNC/H3@ h̄#%/(2br) is the excess
Helmholtz free energy per particle of the liquid and the th
modynamic consistency virial free energy is ensured.

IV. NUMERICAL RESULTS

To solve numerically the OZ plus closure system of no
linear equations we used Zerah’ s algorithm23 and Fourier
transforms were done using fast Fourier transform. In
code we always work with adimensional thermodynam
variablesT* 51/(be), r* 5rs3, andP* 5Ps3/e, wheres
and e are the characteristic length and characteristic ene
of the system, respectively. We always used 1024 grid po
and a step sizeDr 50.025s.

The thermodynamic quantities were calculated acco
ing to the statistical mechanics formulas for the excess in
nal energy per particle,

Uexc/N52prE
0

`

f~r !g~r !r 2dr; ~25!

the excess virial pressure

bPv/r2152
2

3
pbrE

0

` df~r !

dr
g~r !r 3dr; ~26!

the bulk modulus calculated from the compressibility eq
tion,

Bc5
b

rxT
5

1

S~k50!
, ~27!

where xT is the isothermal compressibility; and the bu
modulus calculated from the virial equation,

Bp5b
]Pv

]r
.

For the calculation ofBp onceg(r ) andc(r ) had been cal-
culated, Lado’s scheme for Fourier transforms24 was used to
determine]ĝ(k)/]r. Even if slow, this allows us to explic
itly calculate and later invert the coefficients matrix of t
linear system of equations which enters the calculation
]ĝ(k)/]r.
Downloaded 20 Aug 2003 to 140.105.16.64. Redistribution subject to A
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A. Inverse power potentials

The general form of the inverse power potential is

f~r !5eS s

r D n

, ~28!

where 3,n,`. For this class of fluids the thermodynamic
depends only on the dimensionless coupling parameter

z5~rs3/& !~be!3/n. ~29!

In this paper we choose to fixr* 51 so that Eq.~29! gives
the relation betweenz andT* .

We performed our calculations on then512, 6, and 4
fluids at the freezing point. We compared three kind of c
sures: the one of Rogers and Young25 ~RY! with thermody-
namic consistency virial compressibility and known to
very close to the simulation results, the hypernetted ch
closure, and the HNC/H2 described in Sec. III A. In ea
case we compared our data with the Monte Carlo~MC! re-
sults of Hansen and Schiff.26

1. Inverse 12th-power potential

The freezing point for this fluid is atz50.813. The RYa
parameter to achieve thermodynamic consistency at
value of z is 0.603. Notice that we expressa in units of s
and not of a5(3/4pr)1/3 as in the original Rogers an
Young’ s paper.25

In Table I we compare various thermodynamic quantit
~the excess internal energy per particle, excess virial p
sure, bulk moduli! obtained from the MC simulation o
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

In Fig. 1 we compare the MC, HNC, and HNC/H2 re
sults for the pair distribution function.

2. Inverse 6th-power potential

The freezing point for this fluid is atz51.54. The RYa
parameter to achieve thermodynamic consistency at
value ofz is 1.209.

In Table II we compare various thermodynamic quan
ties ~the excess internal energy per particle, excess vi
pressure, bulk moduli! obtained from the MC simulation o
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

3. Inverse 4th-power potential

The freezing point for this fluid is atz53.92. The RYa
parameter to achieve thermodynamic consistency at
value ofz is 1.794.

TABLE I. We compare various thermodynamic quantities as obtained fr
the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 c
sures, for the inverse 12th-power fluid at the freezing point (z50.813).
Uexc/(Ne) is the excess internal energy per particle,bP(v)/r21 the excess
virial pressure, andBc and Bp are the bulk moduli calculated from the
compressibility and the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 2.675 18.7 - 72.7
RY ~a50.603! 2.626 18.36 69.78 70.13

HNC 3.009 21.04 45.28 80.43
HNC/H2 3.200 22.37 52.66 87.26
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In Table III we compare various thermodynamic quan
ties ~the excess internal energy per particle, excess v
pressure, bulk moduli! obtained from the MC simulation o
Hansen and Shiff,26 the RY, HNC, and HNC/H2 closures.

In Fig. 2 we compare the MC, HNC, and HNC/H2 r
sults for the pair distribution function.

B. Spinodal line

In this subsection we study a pair potential with a mi
mum. In particular we chose the Lennard-Jones potentia

f~r !54eF S s

r D 12

2S s

r D 6G , ~30!

wheree ands are positive parameters. The critical point f
this fluid is at27 Tc* 51.312060.0007, rc* 50.31660.001,
andPc* 50.127960.0006.

Integral equations usually fail to have a solution at lo
temperature and intermediate densities: i.e., in the t
phases unstable region of the phase diagram. In particul
is well known that the HNC approximation is unable to r
produce thespinodal line, the locus of points of infinite com
pressibility in the phase diagram.12 This is due to the loss o
solution as one approaches the unstable region on an
therm from high or from low densities. The line of loss
solution, in the phase diagram, is called thetermination line.

FIG. 1. Comparison of the Monte Carlo~MC!, HNC, and HNC/H2 results
for the pair distribution function of the inverse 12th-power fluid atz
50.813.

TABLE II. We compare various thermodynamic quantities as obtained fr
the MC simulation of Hansen and Shiff, the RY, HNC, and HNC/H2 c
sures, for the inverse 6th-power fluid at the freezing point (z51.54).
Uexc/(Ne) is the excess internal energy per particle,bP(v)/r21 the excess
virial pressure, andBc and Bp are the bulk moduli calculated from th
compressibility and the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 4.090 38.8 - 110.1
RY ~a51.209! 4.114 39.03 111.0 111.4

HNC 4.235 40.18 84.02 113.7
HNC/H2 4.283 40.64 88.29 115.8
Downloaded 20 Aug 2003 to 140.105.16.64. Redistribution subject to A
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According to the discussion of Sec. II, the loss of solution
the HNC approximation can be traced back to the loss
strict convexity of the generating functional.28 Indeed, using
the HNC approximation, we computed the bulk modul
from the compressibility equationBc on several isotherms a
a function of the density. At low temperatures we found th
at both high density and low density we were unable to c
tinue the isotherm at low values ofBc . Zerah’ s algorithm
either could not get to convergence or it would converge a
nonphysical solution~with a pole in the structure factor a
some finite wave vectork). Since HNC/H2 has, by construc
tion, an always strictly convex generating functional, we e
pect it to be able to approximate a spinodal line~there should
be no termination line!.

In Fig. 3 we show the behavior ofBc on several iso-
therms as a function of density, calculated with the HNC/
approximation. We see that now there are no terminat
points. Bc never becomes exactly zero, and the lo
temperature isotherms develop a bump in the intermedi
density region. The same plot for the bulk modulus calc
lated from the virial pressureBp shows that at low
temperatures this bulk modulus indeed becomes zero a
the isotherms both at high and low densities.

In Fig. 4 the pressure is plotted as a function of t
density on several isotherms for the HNC/H2 approximati
Apart from the fact that we find negative pressures, the i
therms have a van der Waals—like behavior.

The graphical analysis of the pressure plotted as a fu
tion of the chemical potential shows that the coexistence
the two phases~points where the curve crosses itself! is pos-
sible and is lost betweenT* 51.1 andT* 51.2. There gen-
erally are two points of coexistence.

V. IMPROVING THE CLOSURES

The numerical results for HNC/H2 exhibit interestin
features as far as the coexistence region is concerned
show unambiguously a worst agreement with the MC str
tural data in correspondence with a marginal improvemen
the thermodynamics.

We feel that the main problem is the difficulty of a
accurate description of the bridge functions in terms of po
ers of the pair correlation function. Recent investigations
improved closures seem to point to the indirect correlat
function g(r ) or some renormalized version of it as the be

TABLE III. We compare various thermodynamic quantities as obtain
from the MC simulation of Hansen and Shiff, the RY~notice that the bulk
moduli were not given in the Rogers and Young’s paper and the value o
virial pressure as reported in our table was not corrected to take into acc
the long-range nature of the potential!, the HNC and HNC/H2 closures, fo
the inverse 4th-power fluid at the freezing point (z53.92).Uexc/(Ne) is the
excess internal energy per particle,bP(v)/r21 the excess virial pressure
andBc andBp are the bulk moduli calculated from the compressibility a
the virial equations, respectively.

Closure Uexc/(Ne) bP(v)/r21 Bc Bp

MC 8.233 107.7 - 156
RY ~a51.794! 8.001 104.7 250.1 242.9

HNC 8.047 105.3 223.3 244.2
HNC/H2 8.068 105.5 227.0 257.7
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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starting point for progress. However, before moving to m
complex relations or functional dependences, we have
plored two possible directions for improving the HNC/H
closure. In the first approach we have tried to follow t
reference hypernetted chain~RHNC! approach by Lado.29 In
the second we have explored the possibilities of optimiza
offered by the numerical coefficient of the cubic term in t
generating functional.

A. Pseudobridge functions for HNC ÕH2

From the graphical analysis of the pair distribution fun
tion it is known1 that g(r ) may be written as

g~r !5exp@2bf~r !1g~r !1B~r !#, ~31!

where g(r )5h(r )2c(r ) is the sum of all the series-typ
diagrams andB(r ) the sum of bridge-type diagrams. If w
take

B~r !52
1

2
h2~r !1G~r !, ~32!

FIG. 2. Comparison of the Monte Carlo~MC!, HNC, and HNC/H2 results
for the pair distribution function of the inverse 4th-power fluid atz53.92.

FIG. 3. Behavior ofBc of the Lennard-Jones fluid, on several isotherms
a function of the density for the HNC/H2 approximation.
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we have that our HNC/H2 approximation amounts to sett
G(r )50. Rosenfeld and Ashcroft6 proposed thatB(r )
should be essentially the same for all potentialsf(r ). We
now make a similar proposal for theG function, and we will
refer to it as thepseudobridge function. In the same spirit of
the RHNC approximation of Lado29 we will approximate
G(r ) with theG function of a short-range~reference! poten-
tial f0(r ). Assuming known the properties of the referen
system, we can calculate theG function as follows:

G0~r !5 ln@g0~r !ebf0(r )#2g0~r !1
1

2
h0

2~r !. ~33!

The reference HNC/H2~RHNC/H2! approximation is then

g~r !5expS 2bf~r !1g~r !2
1

2
h2~r !1G0~r ! D . ~34!

An expression for the free-energy functional can be o
tainedturning onthe potentialf(r ) in two stages: first, from
the noninteracting state to the reference potentialf0(r ) and
then from there to the full potentialf(r ). To this end we
write

f~r ;l0 ,l1!5l0f0~r !1l1Df~r !, ~35!

with Df(r )5f(r )2f0(r ). Following the same steps as i
Ref. 7 we obtain, for the excess free energy per particle,

f exc5 f 11 f 21 f 3
(0)1D f 3 , ~36!

where the first two terms were already encountered
Sec. II:

b f 15
1

2
rE dr$11g~r !„ln@g~r !ebf(r )#21…

2h2~r !/21h3~r !/6%, ~37!

b f 25
1

2r E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%. ~38!

The third term is assumed known:

b f 3
(0)52

1

2
rE drE

0

1

dl0G~r ;l0,0!
]g~r ;l0,0!

]l0

5b~ f (0)2 f 1
(0)2 f 2

(0)!; ~39!

here, f (0) is the excess free energy per particle of the ref
s

FIG. 4. Behavior of the pressure of the Lennard-Jones fluid, on sev
isotherms as a function of the density for the HNC/H2 approximation.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ence system andf 1
(0) , f 2

(0) are defined as in Eqs.~37!, ~38! for
the reference potential and its corresponding correla
functions. The last term is

bD f 352
1

2
rE drE

0

1

dl1G~r ;1,l1!
]g~r ;1,l1!

]l1
. ~40!

According to our proposal,G is insensitive to a change i
potential fromf0 to f. We may then approximate this la
term as follows:

bD f 3'2
1

2
rE drG0~r !@g~r !2g0~r !#. ~41!

Now that we have the free energy we may consider i
a functional of bothh(r ) and G0(r ) and take its variation
with respect to these functions. We find

bd f exc5
1

2
rE dr$c~r !2h~r !1h2~r !/21 ln@g~r !ebf(r )#

2G0~r !%dh~r !2
1

2
rE dr @g~r !2g0~r !#dG0~r !.

~42!

It follows that the free energy is minimized when both t
RHNC/H2 closure@Eq. ~34!# is satisfied and when the con
straint

E dr @g~r !2g0~r !#dG0~r !50 ~43!

is fulfilled.
Taking the second functional derivative off exc with re-

spect toh(r ) we find that also this free energy is a strict
convex functional of the total correlation function. Th
property was lacking in the RHNC theory and constitutes
main feature of the RHNC/H2 closure. As already stresse
Sec. III A it ensures that if a solution to the integral equati
exists it has to be unique.

The constraint, as for RHNC, gives a certain thermo
namic consistency to the theory~see Ref. 7!. If we choose a
hard sphere reference potentialf0(r )5f0(r ;s) which de-
pends on the length scales, the optimum values of the pa
rameters that makes the generating functional a free en
can be determined by the constraint~43! which becomes

E dr @g~r !2g0~r !#
]G0~r !

]s
50. ~44!

However, neither the hard-sphere pseudobridge functions
some empirical attempt to model the unknown function vi
Yukawa function provided useful results.

B. Optimized HNC ÕH3 approximation

For g50 HNC/H3 reduces to HNC/H2. Forg.0 the first
peak of the pair distribution function is dumped with resp
to the one of the pair distribution function calculated w
HNC/H2. Forg,0 the first peak increases giving in gene
a better fit to the simulation data.

In Fig. 5 we compare the pair distribution function of th
Lennard-Jones fluid near its triple point, calculated with
molecular dynamic simulation,21 the HNC/H2 approxima-
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tion, the approximation HNC/H3 withg520.203 ~at lower
values ofg Zerah’s algorithm would fail to converge!, and
the approximation HNC/H3 withg520.1 ~when the gener-
ating functional of HNC/H3 is still strictly convex!. As we
can see HNC/H3 fits the simulation data better than HNC/
even if the first peak is still slightly displaced to the left
the simulation data, a well-known problem of the HN
approximation.6

The best results are given by HNC/H3 withg520.203.
Note that the HNC/H3 generating functional at this value
g is not strictly convex~strict convexity is lost forg&21/9!.
The first peak of the static structure factor is atks.6.75 and
has a magnitude of 2.41, a quite low value for a liquid ne
the triple point. We have calculated the pressure and the
ternal energy. We foundbP/r.3.87 and Uexc/(Ne).
25.72 @very close to the HNC resultsbP/r.3.12 and
Uexc/(Ne).25.87] to be compared with the simulatio
results30 0.36 and26.12, respectively. The bulk moduli ar
Bc.11.74 andBp.36.61 which shows that at the chose
value of g we do not have the thermodynamic consisten
virial compressibility and we do not improve on HNC inco
sistency~using HNC we findBc.7.09 andBp.32.72).

VI. CONCLUSIONS

In this paper we have analyzed the relations betw
generating functionals, thermodynamic consistency,
uniqueness of the solution of the integral equations of liqu
state theory. We think that the requirement of deriving from
free energy and the uniqueness of the solution are two
portant ingredients to enforce in the quest for better closu
The former requirement is of course crucial to get viria
energy consistency. But it is also important to get integ
equations able to provide a closed formula for the chem
potential without additional approximations. This last iss

FIG. 5. Comparison of the pair distribution function of a Lennard-Jon
fluid at r*50.85 andT* 50.719, computed from the molecular dynam
~MD! simulation of Verlet, the HNC/H2 approximation, and the HNC/H
approximation. For HNC/H3 we present results obtained settingg520.1
~when the generating functional of the approximation is still strictly conve!
andg520.203~which gives the best fit possible to the simulation data b
does not ensure the strict convexity of the generating functional!.
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looks highly desirable for applications of IET to the determ
nation of phase diagrams. The latter is certainly a use
constraint from the numerical point of view but it is also
very strong condition, probably able to avoid some n
physical behavior in the coexistence region, although
point would deserve further investigation. Most of the exi
ing closures fail to satisfy the condition of uniqueness of
solution. Among them, only the optimized random phase
proximation by Andersen and Chandler18,31 satisfies both
constraints although they were not used in the original d
vation of the approximation. One obvious question
whether the enforcement of these constraints automatic
results in improved closures.

In this work, we have started an exploration of the ca
bilities of the combined requirement of consistency a
uniqueness, starting with simple modifications to the HN
closure, corresponding to the addition of a square and a c
power ofh(r ) in the HNC functional. We found a couple o
approximations~HNC/H2 and HNC/H3!, which have built in
the virial-free-energy thermodynamic consistency and hav
unique solution.

We numerically tested these closures on inverse po
and the Lennard-Jones fluid. From the tests on the inve
power potential fluids one can see that the HNC/H2 appro
mation is comparable to HNC for the thermodynamic qu
tities and performs worse than RY and even HNC
structural properties. The tests on the Lennard-Jones
revealed that this approximation does not suffer from
presence of a termination line~present in HNC and almos
all the existing closures!. This allowed us to follow isotherms
from the low-density to the high-density region, and this b
havior would be very useful in the study of the phase co
istence. However, the thermodynamic results show onl
marginal improvement on HNC and the structure is definit
worse.

Our trials to improve HNC/H2 in the same spirit of th
modified HNC approaches did not succeed. We feel that
main reason is in the difficulty of modeling the real brid
functions through a polynomial in the functionh(r ). In this
respect, approaches based on generating functionals dep
ing on the indirect correlation functiong(r ) look more
promising but we have not tried them yet.

Much better results for the structure are found w
HNC/H3 as is shown in Fig. 5. However, probably for th
same reasons just discussed, one has to give up to hav
approximation with a strictly convex generating function
depending onh(r ). The thermodynamics reproduced b
HNC/H3 is not yet satisfactory: due to the slight left shift
the main peak of theg(r ), the calculated pressure misses t
simulation result. Nonetheless, the presence of the free
rameterg in HNC/H3 leaves open the possibility of impo
ing the thermodynamic consistency virial compressibility.
the value of the parameter needed to have the consisten
bigger than21/@3supg(r )#, then we would have an approx
mation which is completely thermodynamically consiste
and have a unique solution. This strategy may eventu
lead us to discover that the price we have to pay to hav
completely thermodynamically consistent approximation
the loss of strict convexity of the generating functional.
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APPENDIX A: GENERATING FUNCTIONALS OF g

Often in the numerical solution of the OZ plus closu
integral equation use is made of the auxiliary functiong(r )
5h(r )2c(r ). Suppose that the closure relation can be w
ten as

r2c~r !52C$g~r !%, ~A1!

where C is a local function of the functiong and has a
dependence on the value of the pair potential not explic
shown.

We want to translate the integral equation into a var
tional principle involving functionals ofg(r ). Then we in-
troduce a closure functionalFcl@g# such that

dFcl@g#

dg~r !
5C$g~r !% ~A2!

and an OZ functionalFOZ,c@g# such that, whenc(r ) and
g(r ) satisfy the OZ equation, we have

dFOZ,c@g#

dg~r !
5r2c~r !. ~A3!

Then when both the closure and the OZ relations are sa
fied, the functionalF5Fcl1FOZ,c is stationary with respec
to variations ofg(r ): i.e.,

dF@g#

dg~r !
50. ~A4!

This is the variational principle sought.
Now, we want to findFOZ,c . The OZ equation ink

space is

r ĉ2~k!1rĝ~k!ĉ~k!2ĝ~k!50. ~A5!

When we solve it forĉ we find two solutions

ĉ5
2Ĝ6AĜ214Ĝ

2r
, ~A6!

whereĜ(k)5rĝ(k) is always positive since

Ĝ5r2ĥĉ5r2
ĥ2

11rĥ
5r2

ĥ2

S~k!
, ~A7!

S(k) being the liquid static structure factor which is positiv
definite for all k. Since ĉ(k) is a function which oscillates
around 0, whereĉ is negative we have to choose the soluti
with the minus sign, where it is positive the one with the pl
sign. In particular, if the isothermal compressibility of th
liquid xT is smaller than the one of the ideal gas,xT

0 , we
have that

ĉ~0!5
1

r S 12
xT

0

xT
D ,0, ~A8!

and we have to start with the minus sign.
The functional we are looking for is then@see Eq.~30! in

Ref. 15, with the constant set equal to zero#
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FOZ,c@g#5E
0

1

dtE dr g~r !E dk

~2p!3

r

2
eik"r

3@2tĜ~k!1sc~k!At2Ĝ2~k!14tĜ~k!#, ~A9!

wheresc(k) is 11 when ĉ(k)>0 and21 when ĉ(k),0.
Rearranging the integrals and making the change of vari

y5tĜ we find

FOZ,c@g#5
1

2 E dk

~2p!3 E
0

Ĝ(k)
dy@2y1sc~k!Ay214y#

5E dk

~2p!3 $2Ĝ2/41sc~k!

3„~11Ĝ/2!A~11Ĝ/2!221

2 ln@11Ĝ/21A~11Ĝ/2!221#…%. ~A10!

If the closure relation has the form

r2h~r !52C$g~r !%, ~A11!

we can derive the corresponding functional using the sa
procedure. The final result is a functionalFOZ,h@g# which
differs from Eq. ~A10! for a plus sign in front of the first
term in the integral.

However, by examining their second functional deriv
tives, we notice that bothFOZ,c@g# and FOZ,h@g# are not
certainly convex or concave. Thus, any check of the conv
ity properties of generating functionals of theg(r ) function
should be done on the full functional.

APPENDIX B: THERMODYNAMIC CONSISTENCY

For a homogeneous liquid interacting through a pair
tential f(r ), the Helmholtz free energy per particle,f , can
be considered a functional off. Indeed, in the canonica
ensemble, one has

b f @f#5b f 0

2
1

N
lnS 1

VNEexpF2b
1

2 (
iÞ j

f~r i j !Gdr1¯drND ,

~B1!

where f 0 is the free energy per particle of the ideal g
~f50! and V is the volume of the liquid. Taking the func
tional derivative with respect tobf(r ) one finds

db f @f#

dbf~r !
5

r

2
g~r !. ~B2!

Imagine that we found a functionalA(@h#,@f#,r,b) that
has an extremum for those correlation functions that so
the OZ and the closure system of equations. Suppose fu
that such functional has the property

dbA
dbf~r !

5
r

2
g~r !, ~B3!

which can be rewritten more explicitly as follows:
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dbA
dbf~r !

U
[h],r,b

1E dr 8
dbA

dh~r 8!
U

[f],r,b

dh~r 8!

dbf~r !
5

r

2
g~r !.

~B4!

Evaluating this expression on the correlation functionh̄ so-
lution of the OZ plus closure system of equations, which
an extremum forA, we find

dbA
dbf~r !

U
[ h̄],r,b

5
r

2
ḡ~r !. ~B5!

Then we can write

bA~@ h̄#,@f#,r,b!5E dr
dbA

dbf~r !
U

[ h̄],r,b

bf~r !

1D~@ h̄#,r,b!, ~B6!

with D a functional independent off. Changing variables to
adimensional ones,r5r* r21/3 and using Eq.~B5! we find

bA~@ h̄* #,@f#,r,b!5
1

2 E dr* ḡ* ~r * !bf~r * r21/3!

1D~@ h̄* #,r,b!, ~B7!

where we defined new distribution functionsg* (r * )
5g(r * r21/3). If D has no explicit dependence onr, then
one readily finds

r
]bA~@ h̄* #,@f#,r,b!

]r

52
r

6 E dr* ḡ* ~r * !bf8~r * r21/3!r * r24/3

52
r

6 E dr ḡ~r !bf8~r !r 5bPexc/r, ~B8!

where again we used the fact thatA has an extremum for
h5h̄. We used a prime to denote a derivative with respec
the argument, andPexc is the excess pressure of the liquid

If D has no explicit dependence onb, we also find

]bA~@ h̄* #,@f#,r,b!

]b
5

r

2 E dr ḡ~r !f~r !5Uexc/N,

~B9!

whereUexc is the excess internal energy.
If D has no explicit dependence on bothb and r,

D(@ h̄* #,r,b)5D(@ h̄* #), we conclude from Eqs.~B8! and
~B9! that

A~@ h̄* #,@f#,r,b!5 f exc~r,b!1const, ~B10!

where f exc is the excess free energy per particle of the flu
Under these circumstances we see from Eq.~B8! that we
have thermodynamic consistency between the route to
pressure going through the partial derivative of the free
ergy and the route to the pressure going through the v
theorem.
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APPENDIX C: STRICT CONVEXITY OF FOZ†h ‡

It can be proved that the functional

FOZ@h#5E dk

~2p!3 $rĥ~k!2 ln@11rĥ~k!#%, ~C1!

defined on the convex set

Dc5$h~r !uS~k!.0 ;k%, ~C2!

is a strictly convex functional. The strict convexity is a trivi
consequence of the strict convexity of the integrand in
~C1!.

It remains to prove thatDc is a convex set. Given two
elements of this seth8 and h9, we need to show thath
5lh81(12l)h9 is an element ofDc for all lP@0,1#.
Since

S~k!511rĥ~k!

511r@lĥ8~k!1~12l!ĥ9~k!#

511l@S8~k!21#1~12l!@S9~k!21#

5lS8~k!1~12l!S9~k!.0 ;lP@0,1#, ~C3!

thenDc is a convex set.
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