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Abstract: We find the first three (even) structure factor moments for a (non-quantum) one-component Jellium made of

particles living in three dimensions and interacting with a Coulomb pair-potential plus a short-range term with either a

finite range or decaying exponentially fast at large distances. Starting from the hierarchical Born-Green-Yvon equations we

show that they are all form invariant respect to the addition of the short-range term. We discuss the relevance of the present

study to interpret the failure of the moment sum-rules of ionic-liquids at criticality.

Keywords: Sum-rule; Multipolar sum-rule; Structure factor moments; Internal screening; External screening; One-

component plasma; Jellium; Short-range interaction

PACS number; 05.70.Fh; 61.20.Qg; 64.60.F-; 64.70

1. Introduction

A prototypical model of solid state physics describing free

electrons in metallic elements is the one-component Jel-

lium: a statistical mechanics one-component fluid of point-

wise charged particles made thermodynamically stable by

the addition of a uniform inert neutralizing background.

This fluid has been studied in great details in history both in

its classical and in its quantum versions. Here we will only

deal with the classical version of the model. In particular

several plausible exact relationships between the n-point

correlations functions, the so called sum-rules, has been

determined over the years [1]. Of particular interest, due to

the direct link with scattering experiments on the fluid, are

the even moments of the structure factor, the so called

moment sum-rules, which give the coefficients of the even

powers of the wavenumber in a large wavelength expan-

sion of the structure factor. The zeroth-moment sum-rule,

or charge sum-rule, is commonly known as a consequence

of the internal screening properties of the Coulomb system

and has been known since the work of Debye and Hückel

[2]. The second-moment or Stillinger-Lovett [3] sum-rule

is due to the external screening and has been proved

rigorously for the first time by Martin et al. [4]. The fourth-

moment sum-rule has been proved rigorously for the first

time by Vieillefosse [5] after it had been established earlier

with various heuristic arguments [6–8].

A mixture of charged particles can have species with

opposite charges. In these cases in addition to the electrical

neutrality of the system with the introduction of a neu-

tralizing background it is necessary to introduce a hard-

core on the particles, in order to assure thermodynamical

stability. It is then important to understand how the addi-

tion of a short-range regularizing term (with compact

support or decaying exponentially fast [9]) to the pure

Coulomb pair-potential influences the various sum-rules.

In this work we perform this study on the one-compo-

nent Jellium extending Vieillefosse [5] work to a pair-po-

tential where we add to the Coulomb term a generic short-

range term with either a finite support or exponentially

decaying at large distances. We work in three spatial

dimensions leaving the extension to other dimensions, to a

mixture, and to more general short-range potential regu-

larizations to future works. We start from the constituent

Born-Green-Yvon hierarchic equations [10] for the n-point

correlation functions and with certain assumptions on the

decay of the n-particle Ursell functions as subgroups of

particles are infinitely separated (the exponential clustering

hypothesis) we use a series of multipolar sum-rules [1] to

determine the first three even structure factor moments.*Corresponding author, E-mail: riccardo.fantoni@istruzione.it
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We already know that the forms of the first two even

moments are not influenced by the presence of the regu-

larizing short-range term in the pair-potential [1, 4]. We

will find that also the fourth-moment is form invariant.

This work is a step forward in the understanding of the

failure of the second and fourth moment sum-rules recently

observed in the restricted primitive model (RPM) at criti-

cality [11, 12]. In fact, it was only until recently that the

previously unknown form of the fourth moment sum-rule

for the RPM was established using a semi-heuristic argu-

ment [13, 14] claiming form invariance respect to the pure

coulombic case. Our present result gives a rigorous first

principle proof of the form invariance at least in the weak

coupling regime and for the one-component Jellium. This

fact, if confirmed for the two-component plasma, relegates

the failure of the sum-rules at criticality to the disruption,

upon approaching a phase transition, of the exponential

clustering, i.e. the decay to zero of the truncated correla-

tions faster than any inverse power of distance as groups of

particles are separated by an infinite distance. In fact, it has

to be expected that at criticality the correlation functions

develops long-range tails with monotonous or oscillating

inverse power law decay [15].

The work is organized as follows: In Sect. 2 we find

again the zeroth moment sum-rule following the original

derivation of Martin et al. [1], in Sect. 3 we find again the

second moment sum-rule following the original derivation

of Martin et al. [1, 4], in Sect. 4 we derive the fourth

moment sum-rule with a route alternative to the one of

Vieillefosse [5] which explains clearly from the point of

view of the BGY why also this moment is form invariant

upon the addition of a short-range term to the Coulomb

pair-potential, in Sect. 5 we determine the isothermal

compressibility of the system, and Sect. 6 is for the con-

cluding remarks.

2. Derivation of the zeroth moment sum-rule

The second order Born-Green-Yvon (BGY) hierarchy [1]

$r1u2ð1; 2Þ
¼ bF21½u2ð1; 2Þ þ 1�

þ q
Z

dr3 ½1þ u2ð1; 2Þ þ u2ð1; 3Þ þ u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF31

� q
Z

dr3 ½u2ð1; 2Þ þ 1�bF31

¼ bF21½u2ð1; 2Þ þ 1� þ q
Z

dr3 ½u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF31

ð1Þ

where b ¼ 1=kBT with kB Boltzmann’s constant and T the

absolute temperature, q is the density of the fluid,

F21 ¼ �$r1vð1; 2Þ, with v(1, 2) the pair-potential that is the
sum of a Coulomb term vcð1; 2Þ ¼ e2=jr2 � r1j and a short-
range term vsrð1; 2Þ with compact support or decaying

exponentially fast [9]. We will also call Fc
21 ¼ �$r1v

cð1; 2Þ
and Fsr

21 ¼ �$r1v
srð1; 2Þ. According to Ref. [9] the Ursell

functions unð1; 2; . . .; nÞ must satisfy exponential clustering

[1], i.e. they should tend to zero (monotonously or oscil-

lating) faster than any inverse power of the distance as the

distance between any group of particles at ðr1; r2; . . .; rnÞ
tends to infinity. The Ursell functions are assumed to

depend only on the shape of the figure formed by the

various points (and not on its space orientation) and they

are symmetrical in any permutation of the particles. The

first assumption is a consequence of the homogeneity and

isotropy of the fluid, the second is a consequence of dis-

tinguishability of the particles. Of course the exponential

clustering assumption is valid for the high temperature

(low density) infinite homogeneous phase of the fluid when

the correlation functions are believed to obey to the BGY

hierarchy. We will generally indicate vectors with a bold-

face letter and absolute values of vectors with a normal

(Roman) version of the same font r ¼ jrj. We use a hat to

denote the unit vector r̂ ¼ r=r.

In the second equality of Eq. (1) we used the fact thatR
dr3 u2ð1; 3ÞF13 ¼ 0 by symmetry. Now we observe that

the left hand side of Eq. (1) tends to zero faster than any

inverse power of x ¼ jxj ¼ jr2 � r1j as x tends to infinity

and the same is true for the first and fourth terms on the

right hand side. So the sum of the second and third terms

on the right hand side must vanish in the same way, in this

limit. Then we require thatZ
dr3sð2; 3ÞF31 ð2Þ

where sð2; 3Þ ¼ qu2ð2; 3Þ þ dð2; 3Þ and d is the Dirac delta

function, tends to zero faster than any power of the distance

x when the latter tends to infinity. Expanding Eq. (2) in

powers of 1 / x in this limit, we deduceZ
dr3 sðyÞylPlðx̂ � ŷÞ ¼ 0; l� 1 ð3Þ

I0 ¼
Z

dr3 sðyÞ ¼ 0 ð4Þ

where y ¼ r3 � r2 and Pl are the Legendre polynomials.

Eq. (4) is the zeroth moment sum-rule also known as the

charge or electroneutrality sum-rule [1]. It is the simpler of

the multipolar sum-rules (3). We immediately see that in

our derivation we did not use the fact that v is purely

Coulombic. It is sufficient that it contains the Coulomb

potential.
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3. Derivation of the second moment sum-rule

Following Ref. [4] we may write the second order BGY

hierarchy as follows

$r2u2ð1; 2Þ
¼ bF12½u2ð1; 2Þ þ 1�þ

q
Z

dr3½1þ u2ð1; 2Þ þ u2ð1; 3Þ þ u2ð2; 3Þ

þ u3ð1; 2; 3Þ�bF32�

q
Z

dr3½u2ð1; 2Þ þ 1�bF32

ð5Þ

where F12 ¼ �$r2vð1; 2Þ, with v(1, 2) the pair-potential,

and the last line in Eq. (6) is for the neutralizing uniform

background. We immediately observe thatR
dr3 u2ð2; 3ÞF23 ¼ 0 by symmetry.

Multiplying by r12 ¼ r1 � r2 and integrating over r1 we

findZ
dr1 r12 � $r2u2ð1; 2Þ

¼
Z

dr1 r12

�
bF12

þ q
Z

dr3fu2ð1; 3Þ þ ½dð1; 3Þ þ dð1; 2Þ�u2ð2; 3Þ=q

þu3ð1; 2; 3ÞgbF32g

¼
Z

dr1 r12

Z
dr3½qu2ð1; 3Þ þ dð1; 3Þ�bF32

�

þ q
Z

dr3 c3ð1j2; 3ÞbF32

�
;

ð6Þ

where sð1; 3Þ ¼ qu2ð1; 3Þ þ dð1; 3Þ and c3ð1j2; 3Þ ¼
u3ð1; 2; 3Þ þ ½dð1; 2Þ þ dð1; 3Þ�u2ð2; 3Þ=q the excess

charge density which does not carry multipoles of any

order (See Proposition 2.2 in Ref. [1]). ThenZ
dr1 r12 � $r2u2ð1; 2Þ

¼
Z

dr1r12

Z
dr3sð1; 3ÞbF32

þ q
Z

dr3bF32

Z
dr1r12c3ð1j2; 3Þ:

ð7Þ

Now we observe that due to the dipole sum-rule [1] the last

line in Eq. (7) must vanish, F ¼ Fsr þ Fc can be split into a

short-range term, Fsr , and a coulombic term, Fc, whereZ
dr1 r12

Z
dr3 sð1; 3ÞbFsr

32

¼
Z

dr23 bF
sr
32

Z
dr13 ðr13 þ r32Þsð1; 3Þ ¼ 0;

ð8Þ

where we used the charge sum-rule and isotropy of the

system. This tells us that the result we will find for the

second moment is form invariant under the addition to the

pair-potential of a generic short-range term. Also, using

$r1 ¼ �$r2 and
R
dr1. . . ¼ �

R
dr2. . ., we findZ

dr1 r12 � $r2u2ð1; 2Þ ¼3

Z
dr1u2ð1; 2Þ ¼ �3=q; ð9Þ

where we also used the charge sum-rule. Putting all

together, we find

� 3

q
¼ 1

2

Z
dr1$r1ðr212Þ

Z
dr3sð1; 3ÞbFc

32

¼� 1

2

Z
dr1$r2ðr212Þ

Z
dr3sð1; 3ÞbFc

32

¼ 1

2

Z
dr1r

2
12

Z
dr3sð1; 3Þb$r2F

c
32

¼ 1

2

Z
dr1r

2
12sð1; 2Þ4pe2b;

ð10Þ

where we used the property that $r2F
c
32 ¼ 4pe2dð3; 2Þ. And

finally we find for the second moment sum-rule

I2 ¼
Z

dr2r
2
12sð1; 2Þ ¼

3

2pqbe2
¼ 6

k2D
; ð11Þ

where kD ¼ k�1
D ¼ ð4pqbe2Þ�1=2

is the Debye-Hückel

screening length.

4. Derivation of the fourth moment sum-rule

Starting from Eq. (6) we multiply by r212r12 and integrate

over r1 to getZ
dr1 r

2
12r12 � $r2u2ð1; 2Þ

¼
Z

dr1 r
2
12r12

�
bF12

þ q
Z

dr3fu2ð1; 3Þ þ ½dð1; 3Þ þ dð1; 2Þ�u2ð2; 3Þ=q

þu3ð1; 2; 3ÞgbF32g

¼
Z

dr1 r
2
12r12

Z
dr3½qu2ð1; 3Þ þ dð1; 3Þ�bF32

�

þq
Z

dr3 c3ð1j2; 3ÞbF32

�

¼
Z

dr1 r
2
12r12

Z
dr3 sð1; 3ÞbF32

þ q
Z

dr3 bF32

Z
dr1 r

2
12r12c3ð1j2; 3Þ:

ð12Þ

Note that splitting again into a short-range term and the

Coulomb one we find for the first term on the right hand

side of Eq. (12)

Form invariance of the moment sum-rules\ldots
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Z
dr3 bF

sr
32

Z
dr1 r

2
12r12sð1; 3Þ

¼ �
Z

dr32 bv
srð3; 2Þ

Z
dr12 $r12 ½r212r12sð1; 3Þ�;

¼
Z

dr32 bv
srð3; 2Þ

Z
dS12 r

2
12r12sð1; 3Þ ¼ 0:

ð13Þ

Since sð1; 3Þ ¼ sðjr32 þ r21jÞ decays exponentially fast as

r12 tends to infinity and the surface integral is over a sphere

centered on r12 ¼ 0 and with an infinite radius. The same

holds for the second term on the right hand side of Eq. (12).

This proves that the result we will find is independent

from the addition of a short-range part to the Coulomb pair-

potential.

Now we observe thatZ
dr1 r

2
12r12

Z
dr3 sð1; 3ÞbFc

32

¼ 1

4

Z
dr1 $r1ðr412Þ

Z
dr3 sð1; 3ÞbFc

32

ð14Þ

¼ � 1

4

Z
dr1 $r2ðr412Þ

Z
dr3 sð1; 3ÞbFc

32 ð15Þ

¼ 1

4

Z
dr1 r

4
12

Z
dr3 sð1; 3Þb$r2F

c
32 ð16Þ

¼ 1

4

Z
dr1 r

4
12sð1; 2Þ4pe2b: ð17Þ

And also using integration by partsZ
dr1 r

2
12r12 � $r2u2ð1; 2Þ

¼
Z

dr1 $r12ðr212r12Þu2ð1; 2Þ
ð18Þ

¼ 5

Z
dr1 r

2
12u2ð1; 2Þ ð19Þ

¼ � 15

2pq2be2
; ð20Þ

where in the last equation we used the main result of

previous section for the second moment condition (11).

In this case
R
dr1dr3 bF32r

2
12r12c3ð1j2; 3Þ 6¼ 0 and we

may recognize in such a term the one giving rise to the

isothermal compressibility in Eq. (21).

Putting together Eqs. (12), (13), (14), (18), and (22) we

should reach the following fourth moment result

I4 ¼
Z

dr2 r
4
12s2ð1; 2Þ ¼

15

2p2q2b2e4
v0T
vT

¼ 120

k4D

v0T
vT

; ð21Þ

where 1
vTq

¼ oP
oq

���
T

is the isothermal compressibility and

v0T ¼ b=q the one of the ideal gas. As already stressed this

result is independent from the addition of a short-range

term to the Coulomb pair-potential.

Then we should be able to prove that

1� v0T
vT

¼ q
R
dr3 bFc

32

R
dr1 r

2
12r12c3ð1j2; 3ÞR

dr1 r212r12 � $r2u2ð1; 2Þ

¼ q
5

R
dr3 bFc

32

R
dr1 r

2
12r12c3ð1j2; 3ÞR

dr1 r212u2ð1; 2Þ

¼ � 2pq3b2e2

15

Z
dr32dr12 c3ð1j2; 3Þr212r12 � $r32v

cð3; 2Þ

¼ � 2pq3b2e2

9

Z
dr32dr12 c3ð1j2; 3Þr212r32 � $r32v

cð3; 2Þ;

ð22Þ

where in the last equality we used r12 ¼ r13 þ r32,

$rðr2rÞ ¼ 5r2, r2$rðrÞ ¼ 3r2, and integration by parts.

This will be done in the next section.

5. Compressibility sum-rule

From the virial theorem follows that the pressure estimator

can be written as follows [10],

bP ¼ q� bq2

6

Z
dr u2ðrÞr � $rv

cðrÞ: ð23Þ

So that

1� v0T
vT

¼ 1� b
oP

oq

����
T

¼ b
6

Z
dr

oq2u2ðrÞ
oq

r � $rv
cðrÞ; ð24Þ

We then see that Eq. (22) can be obtained using an analysis

similar to the one of Vieillefosse et al. [16], thus finding

oq2u2ðr32Þ
oq

¼� 4pq3be2

3

Z
dr12 r

2
12c3ð1j2; 3Þ: ð25Þ

We then see how vT is the isothermal compressibility of a

plasma with a Coulomb interaction pair-potential among

the particles.

6. Conclusions

We determined the first three (even) structure factor

moment sum-rules (4), (11), (21) for a three-dimensional

Jellium with the particles interacting with a pair-potential

that is the sum of the Coulomb potential e2=r and a short-

range term with either a finite range or decaying expo-

nentially fast at large r. We found that they are all invariant

in form respect to the addition of the short-range term.

Moreover our derivations of the sum-rules are different and

simpler than the ones already found in the literature (as

described in the review of Ph. Martin [1]). This strategy

carry us to the determination of an compressibility sum-

rule (24) and (25) in agreement with the one of Vieillefosse

[16].

R Fantoni

Author's personal copy



When studying common matter, whose constituents are

made of charged particles, the Coulomb interaction plays a

special role, ruling the fundamental correlation sum-rules.

What really matter is the long-range nature of the Coulomb

interaction and the short-range details do not have an

influence on the statistical behaviors of the many-body

correlations. This allows to use different models for the

charges behavior at short-range where we may have some

sort of indeterminacy in the description of the point-wise

constituents particles microscopic character. All these

models will have the same macroscopic behavior.

We could for example apply our general setting to the

particular case of charged hard-spheres, when the short-

range term is just a hard-core repulsion of a certain

diameter. This is just one of the commonly used short-

range regularization employed in a two-component-plasma

(TCP) with particles of opposite charges [13, 17, 18] that

would otherwise collapse one over the other. Moreover the

hard-core model has been historically the favorite play-

ground in statistical mechanics as it represents the simplest

model of many-body systems of interacting particles.

In a recent work Das, Kim, and Fisher [11, 12] found

out, through finely discretized grand canonical Monte

Carlo simulations, that in the Restricted Primitive Model

(RPM) of an electrolyte [17, 18], the second- and fourth-

moment charge-charge sum-rules, typical for ionic fluids,

are violated at criticality. For a 1:1 equisized charge-

symmetric hard-sphere electrolyte their grand canonical

simulations, with a new finite-size scaling device, confirm

the Stillinger-Lovett second-moment sum-rule except,

contrary to current theory [19], for its failure at the critical

point ðTc; qcÞ. Furthermore, the k4 term in the charge-

charge correlation or structure factor SZZðkÞ expansion is

found to diverge like the compressibility when T ! Tc at

qc. These findings are in evident disagreement with avail-

able theory for charge-symmetric models and, although

their results are qualitatively similar to behavior expected

for charge-asymmetric systems [19], even a semi-quanti-

tative understanding has eluded them. Our present study

could be a first step towards an explanation of such puz-

zling behavior. Even if, as pointed out in Ref. [14], from

the work of Santos and Piasecki [15] follows that the Ursell

functions of any order are likely to have a long-range

behavior on a critical point, thus violating our exponential

clustering working-hypothesis.

The zeroth-, second-, and fourth-moment sum-rules are

rigorously derived starting from the Born-Green-Yvon

equations and the exponential clustering hypothesis by

Suttorp and van Wonderen [20–22] for a thermodynami-

cally stable ionic mixture made of point-wise particles of

charges all of the same sign immersed in a neutralizing

background, the Jellium-mixture. Our results show that the

addition of a hard-core, or more generally any finite-range

or exponentially decaying contribution to the pair-poten-

tial, to the particles, which would be necessary in order to

make thermodynamically stable the system of Suttorp and

van Wonderen for mixtures with particles of opposite

charges, does not change the form of the first two three

moments of the structure factor of the one-component

Jellium.

It is still an open problem the extension of our study to

the more general case of a mixture. A semi-heuristic

derivation has recently been carried out [13, 14] showing

that the addition of the short-range term should not play

any role at the level of the first three (even) structure factor

moments for a neutral TCP without the background.

Strictly speaking, in these derivations we had to use results

that are only rigorously valid in the Debye regime, like the

local neutrality of the homogeneous system. Our present

rigorous result confirms this scenario, at least in the weak

coupling limit. Another interesting project is to generalize

these sum-rule results to the case of Jellium living in

curved surfaces [23–26]. In these cases the system can be

mapped in an equivalent flat Jellium interacting with an

external potential generated by the curvature of the surface

in which the particles live. Another interesting extension of

our work consists in studying the case in which the short-

range pair-potential decays at large distances as an inverse

power s of the distance, in which case the decay of cor-

relations is also always algebraic, with the only exception

of s ¼ m� 2 with m the space dimension [9]. In this case we

must drop the exponential clustering hypothesis and our

present derivation is not valid anymore.
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