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We discuss thermodynamic stability of neutral real (quantum) matter from the point of view of
a computer experiment at ¯nite, nonzero, temperature. We perform (restricted) path integral

Monte Carlo simulations of the two component plasma where the two species are both bosons,

both fermions, and one boson and one fermion. We calculate the structure of the plasma and

discuss about the formation of binded couples of oppositely charged particles. The purely
bosonic case is thermodynamically unstable. In this case we ¯nd an undetermined size-dependent

contact value unlike partial radial distribution function. For the purely fermionic case, we ¯nd a

demixing transition with binding also of like species.
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1. Introduction

For matter to be stable it must be globally neutral. It is well known that in order for a

system of an equal number N of oppositely charged point particles to be stable

against collapse, quantum mechanics is required, and furthermore at least one of the

species of particles must be a fermion. Without the exclusion principle, the ground

state energy per particle of the system diverges as N7=5 and the thermodynamic limit

is not well de¯ned.1 As a matter of fact, in the classical limit one is forced to introduce

a short-range regularization (like an hard core or others)2 of the pair-potential be-

tween the particles in order to prevent the collapse of the negative charges on

the positive ones.3,4 All this is at the heart of the fundamental question of whether

the matter we live in is stable or not.

In this work, we want to explore the structure of a two-component mixture of

particles with two opposite charge species. We will consider particles of charge �e

with e the charge of an electron. Furthermore, we will assume that the two species

both have the mass of an electron m. We will consider explicitly the cases where
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both species have spin 1=2 (purely fermionic), when they both have spin 1

(purely bosonic) and when one species has spin 1=2 and one species has spin 1

(fermions–bosons mixture). In all cases, we assume that each species has polariza-

tion equal to 1. Doing so, we will be able to determine the thermodynamic insta-

bility of the purely bosonic case as opposed to the other two cases. We will work at

high temperatures and intermediate densities, when the quantum e®ects are not

very important. The path integral Monte Carlo computer experiment is only exact

in the purely bosonic case apart from the usual ¯nite size and imaginary time

discretization errors. For the other two cases, it is necessary to resort to an ap-

proximation due to the fermions sign problem.5,6 We will choose the restricted path

integral approximation with a restriction based on the nodes of the ideal density

matrix, which is known to perform reasonably well for the one component (Jellium)

case from the pioneering work of Brown et al.7,8 Other methods have been imple-

mented recently in order to reach high densities: Bonitz et al.9,10 combine con¯gu-

ration path integral Monte Carlo and permutation blocking path integral Monte

Carlo. Malone et al.11 agrees well with the one of Bonitz at high densities and the

direct path integral Monte Carlo one of Filinov et al.12 that agrees well with Brown

at low density and moderate temperature. Our method is alternative to all previ-

ously employed ones.

In our simulations, we use the worm algorithm13,14 which is able to sample

the necessary permutations of the indistinguishable particles without the need of

explicitly sampling the permutations' space treating the paths as \worms" with a tail

(Masha) and a head (Ira) in the �-periodic imaginary time, which can be attached

one with the other in di®erent ways or swap some of their portions. We explicitly and

e±ciently applied the restriction to the worms and this allowed us to treat the

fermionic or mixed case explicitly, albeit only approximately. The approximation is

expected to become better at low density and high temperature, i.e. when correlation

e®ects are weak.

Possible physical realizations of interest to our work for the case of both

species of spin 1=2 are a nonrelativistic electron–positron plasmas created in the

laboratory15 or an electron–hole plasma which is important in the realm of low-

temperature semiconductor physics. Conduction electrons and holes in semi-

conductors interact with Coulomb force and can have very similar e®ective

masses.16,17

The work is organized as follows: In Sec. 2, we describe the physical model

we want to study, in Sec. 3, we describe the computer experiment method and

techniques, in Sec. 4, we describe our numerical results, and Sec. 5 is for ¯nal

remarks.

2. The Model

Setting lengths in units of the Bohr radius a0 ¼ }2=me2 and energies in Rydberg's

units, Ry ¼ }2=2ma2
0, where m is the electron mass, the Hamiltonian of the two
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component nonrelativistic electron–positron mixture is

H ¼ T þ V ¼ ��
XNþ

i¼1

r 2
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where � ¼ }2=2ma2
0 ¼ Ry, R ¼ ðrþ

1 ; . . . ; r
þ
Nþ ; r

�
1 ; . . . ; r

�
N�Þ with rþ

i the coordinates

of the ith positron and r�
i the ones of the ith electron. We will chooseNþ ¼ N� ¼ N ,

since the system must be neutrally charged in order to be thermodynamically stable.

We will not introduce any short-range regularization of the Coulomb potential. And

we will treat the Coulomb long-range potential using the Ewald sums technique18 in

order to treat it in the periodic box of side L of the simulation.

We will treat explicitly the electron–positron case where the two particles are

both fermions, the case where both species are bosons, and the case where only one

species is a fermion. Of course, there is no charged boson in nature with the mass and

the charge of the electron, so this will remain a speculative analysis, to explore the

thermodynamic stability and statistical properties of the mixture.

We will carry on a grand canonical simulation at ¯xed chemical potentials of

the two species �þ; ��, volume � ¼ L3, and absolute temperature T ¼ 1=kB�, with

kB the Boltzmann constant.

3. Simulation Method

We carry on a (restricted) path integral Monte Carlo computer experiment19 using

the worm algorithm13,14 to simulate the behavior of the quantum mixture at

¯nite temperature.

The density matrix of a system of many distinguishable bodies at temperature

kBT ¼ ��1 can be written as an integral over all paths fRtg

�ðR�;R0;�Þ ¼
I
R0!R�

dRt exp ð�S½Rt�Þ: ð3:1Þ

The path Rt begins at R0 and ends at R�. For nonrelativistic particles interacting

with a potential V ðRÞ, the action of the path, S½Rt�, is given by the Feynman–Kac

formula

S½Rt� ¼
Z �

0

dt
1

4�

dRt

dt

����
����2 þ V ðRtÞ

� �
: ð3:2Þ

Thermodynamic properties, such as the radial distribution function (RDF), are

related to the diagonal part of the density matrix, so that the path returns to its

starting place after a time �.

To perform Monte Carlo calculations of the integrand, one makes imaginary

thermal time discrete with a time step � , so that one has a ¯nite (and hopefully small)
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number of time slices and thus a classical system of N particles in M ¼ �=� time

slices; an equivalent NM particle classical system of \polymers".19

Thermodynamic properties are averages over the thermal 2N–body density

matrix which is de¯ned as a thermal occupation of the exact eigenstates �iðRÞ
�ðR;R0;�Þ ¼

X
i

��
i ðRÞe��Ei�iðR0Þ: ð3:3Þ

The partition function is the trace of the density matrix

Zð�Þ ¼ e��F ¼
Z

dR�ðR;R;�Þ ¼
X
i

e��Ei ; ð3:4Þ

with F Helmholtz's free energy. Other thermodynamic averages are obtained as

hOi ¼ Zð�Þ�1

Z
dRdR0hRjOjR0i�ðR0;R;�Þ: ð3:5Þ

Path integrals are constructed using the product property of density matrices

�ðR2;R0;�1 þ �2Þ ¼
Z

dR1�ðR2;R1;�2Þ�ðR1;R0;�1Þ; ð3:6Þ

which holds for any sort of density matrix. If the product property is used M times,

we can relate the density matrix at a temperature ��1 to the density matrix at a

temperature M��1. The sequence of intermediate points fR1;R2; . . . ;RM�1g is the

path, and the time step is � ¼ �=M . As the time step gets su±ciently small, the

Trotter theorem tells us that we can assume that the kinetic T and potential V

operator commute so that: e��H ¼ e��T e��V (strictly speaking this is only possible

when V is bounded from below20 but this is always satis¯ed by our simulation since

we use a radial discretization of the pair Coulomb potential) and the primitive

approximation for the Boltzmannon density matrix is found19

�ðR0;RM ;�Þ ¼
Z

dR1 . . . dRM�1exp �
XM
m¼1

Sm

" #
; ð3:7Þ

Km ¼ 3N

2
lnð4���Þ þ ðRm�1 �RmÞ2

4��
; ð3:8Þ

Sm �Km � U m
primitive ¼

�

2
½V ðRm�1Þ þ V ðRmÞ�: ð3:9Þ

The Feynman–Kac formula for the Boltzmannon density matrix results from taking

the limit M ! 1. The price we have to pay for having an explicit expression for the

density matrix is additional integrations; all together 3NðM � 1Þ. Without techni-

ques for multidimensional integration, nothing would have been gained by expanding

the density matrix into a path. Fortunately, simulation methods can accurately treat

such integrands. It is feasible to make M rather large, say in the hundreds or

thousands, and thereby systematically reduce the time-step error. The leading error

of the primitive approximation goes like � ��2.19

R. Fantoni

1850028-4



In addition to sampling the path, one also needs to sample all the various

necessary permutations of the indistinguishable particles (bosons or fermions) and

this is accomplished on the °y through the use of the worm algorithm.13,14

When we are dealing with bosons or fermions �B;F ðR�;R0;�Þ ¼ AP�ðR�;PR0;�Þ
is the density matrix corresponding to some set of quantum numbers which are

obtained by using the projection operator AP ¼ 1
N !

P
Pð�ÞP, where P is a per-

mutation of particle labels and the permutation sign is a plus for bosons (B) and a

minus for fermions (F), on the distinguishable particle density matrix. Then, for

bosons we can carry on the Monte Carlo calculation without further approximations,

but for fermions the following Restricted Path Integral approximation is also

necessary in order to overcome the ubiquitous sign problem5,6

�F ðR�;R0;�Þ ¼
Z

dR0�F ðR0;R0; 0Þ
I
R0!R�2�T ðR0Þ

dRte
�S½Rt�; ð3:10Þ

where the subscript means that we restrict the path integration to paths starting atR0,
ending at R� and avoiding the nodes (the zeroes) of a known trial density matrix, �T ,

assumed to have nodes, @�T , close to the true ones. The weight of the walk is

�F ðR0;R0; 0Þ ¼ ðN !Þ�1
P

Pð�ÞP	ðR0 �PR0Þ. It is clear that the contribution of all

the paths for a single element of the density matrix will be of the same sign, thus

avoiding the sign problem. On the diagonal, the density matrix is positive and on the

path restriction �F ðR;R0;�Þ > 0, then, only even permutations are allowed since

�F ðR;PR;�Þ ¼ ð�ÞP�F ðR;R;�Þ. It is then possible to use a bosonic calculation to

get the approximate fermionic case.

The restriction is implemented choosing as the trial density matrix the ideal

density matrix: we just reject the move (remove, close, wiggle and displace in the

Z-sector, and advance and swap in the G-sector),13,14 whenever the proposed path is

such that the ideal fermionic or fermionic-bosonic density matrix calculated between

the reference point and any of the time slices subject to newly generated particles

positions has a negative value.

The ideal fermionic or fermionic–bosonic density matrix is given by

�0ðR;R0; tÞ / A
e�

ðrþ
i
�rþ0

j
Þ2

4�t e�
ðrþ

i
�r�0

k
Þ2

4�t

e�
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l
�rþ0

j
Þ2

4�t e�
ðr�
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�r�0

k
Þ2

4�t

0
B@

1
CA; ð3:11Þ

where � ¼ }2=2m and A is the (anti)symmetrization operator for the positive

and negative species (purely fermionic mixture) or for the positive species only

(fermionic–bosonic mixture). We expect this approximation to be best at high

temperatures and low densities when the correlation (the particles coupling and their

quantum nature) e®ects are weak. Clearly in a simulation of the ideal gas (V ¼ 0),

this restriction returns the exact result for fermions, otherwise, it is just an

approximation.

The restriction or the ¯xed nodes path integral may have an in°uence on the

thermodynamic stability of the °uid under study, especially at low temperatures
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when quantum e®ects become more relevant. On the other hand, if this were the case,

it would have an in°uence on the stability of the °uid under all thermodynamic

states which we can clearly exclude since as soon as we include at least one fermionic

species in the binary mixture, the system becomes thermodynamically stable even at

moderately low temperatures when the restriction is not very e®ective.

4. Results

In our simulations, we chose kBT ¼ 10Ry and L ¼ 5a0. Going to lower tempera-

tures, the contact value for the unlike partial RDF tends to increase since the

Fig. 1. (Color online) We show the partial RDF on a log–log scale. For the mixture of bosons and

the °uid with one bosonic species and one fermionic species, we show gþ�ðriÞ in the upper panel and

gþþðriÞ; g��ðriÞ in the bottom panel. In all cases, we have L=2 ¼ rcuta0 ¼ 2:5a0 and the RDF are calculated

on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1 with
M ¼ 10 time slices and an average of approximately 36 particles for the fermions case and 39 for the bosons

case. The simulation was 15 000 blocks of 500 steps taking averages every 100 moves. But gþ�ð0Þ for the
purely bosonic case continued to grow afterwards.
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binding between a positive and a negative charge increases. This is because the

coupling constant of the mixture is � ¼ �e2=a0. For the purely bosonic case, the

contact value never reaches an equilibrium during the simulation evolution unlike for

the purely fermionic case or the fermions–bosons mixture where a positive charge

binds with a negative charge in a stable way at low densities.21

It is also useful to introduce a degeneracy temperature � ¼ T=TF , where TF ¼
TD2�

2=

2=3
3 is the Fermi temperature, here 
3 ¼ 4�=3, and

TD ¼ 2n2=3

kB
Ry; ð4:1Þ

with n ¼ Na3
0=V , the density is the degeneracy temperature. For temperatures

higher than TD, as in our simulations, quantum e®ects are less relevant. For this

reason, we chose M ¼ 10 in all cases giving a � ¼ 0:01Ry�1. So the primitive

approximation is a good one.

Another relevant parameter is the Wigner–Seitz radius rs ¼ ð3=4�nÞ1=3 which in

the degenerate regime � � 1 regulates whether the system of particles is dominated

by the potential energy or by the kinetic energy. At high rs, the potential energy

dominates and the system tends to crystallize.17

From Fig. 1, we see how the binary mixture is stable when the particles are

fermions and unstable when they are bosons. This is manifested by a contact value of

the unlike partial RDF, for the purely bosonic case, which is one order of magnitude

higher than the one for the purely fermionic case. It varies wildly during the simu-

lation evolution, with variations of one or more orders of magnitudes upon

Fig. 2. (Color online) We show the unlike partial RDF on a log–log scale for the purely bosonic case at

three di®erent values of L=2 ¼ rcuta0 and approximately same density and at two times during the

simulation, after Nb ¼ 15 000 blocks (of 50 000 worm moves) and after Nb ¼ 50 000 blocks. The RDF are
calculated on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1

with M ¼ 10 time slices. The simulation was 15 000 blocks of 500 steps taking averages every 100 moves.

But gþ�ð0Þ continued to grow afterwards.
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inspections of the simulation at di®erent time intervals of 10 000 blocks of 50 000

worm moves each. The like partial RDF for the purely fermionic case shows a

spontaneous symmetry braking, where the positive–positive RDF di®ers from the

negative–negative one and presents a broad shoulder near the origin which suggests

the formation of like positive pairs. The contact value in the bosonic case has huge

variations upon changes of the size of the system as shown by Fig. 2. This also

means that there is no well-de¯ned thermodynamic limit of the RDF which in turn is

a manifestation of the system instability.1 This does not occur when at least one of

the two species is a fermion. In this case, a slight shoulder near the origin in the

Fig. 3. (Color online) We show the partial RDF on a log–log scale. For the mixture of bosons and

the °uid with one bosonic species and one fermionic species, we show gþ�ðriÞ in the upper panel and

gþþðriÞ; g��ðriÞ in the bottom panel. In all cases, we have L=2 ¼ rcuta0 ¼ 2:5a0 and the RDF are calcu-

lated on 200 radial points ri ¼ idr with dr ¼ rcut=200. The simulation was carried on at � ¼ 0:1Ry�1 with
M ¼ 10 time slices and an average of approximately 38 particles for the mixed fermionic–bosonic case and

39 for the purely bosonic case. The simulation was 15 000 blocks of 500 steps taking averages every 100

moves. But gþ�ð0Þ for the purely bosonic case continued to grow afterwards.
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unlike partial RDF indicates the stable pairing between a positive and a negative

charge. The shoulder grows at lower temperature and lower density.

In order to have stability, it is su±cient to have at least one of the two particle

species to be a fermion as is shown in Fig. 3. In this case, the like partial RDF for the

bosonic species is comparable with the one of the purely bosonic case and the one for

the fermionic component is lower. No like pair formation is visible from the structure

analysis. The unlike partial RDF is superposed to the one of the purely fermionic case

but presents an on top value two orders of magnitudes smaller.

The di®erence between the purely fermionic mixture and the fermions–bosons had

to be expected also from the point of view of the fact that our spin polarized fermions,

unlike the bosons, do not have a state with zero total angular momentum.

5. Conclusions

In conclusion, we carried on some computer experiments for the binary mixture of

oppositely charged pointwise particle species when both species are bosons, both

fermions, and one boson and one fermion. We chose the charge and the mass equal to

the ones of the electron and only considered fully polarized species. We used the

worm algorithm to perform (restricted) path integral Monte Carlo simulations,

at ¯nite temperatures.

We simulated the mixture with a weak degree of degeneracy � � 1:4 and a weak

coupling � ¼ 0:2. The Wigner–Seitz radius for each species was rs � 1.

During the simulations, we measured the radial distribution function of the three

mixtures and found that the purely bosonic one is thermodynamically unstable to-

ward the collapse of oppositely charged particles upon the others. Whereas, in the

other two mixtures, the Pauli exclusion principle restores the stability producing

stable bindings: like pairs form for the purely fermionic case as a result of a spon-

taneous symmetry breaking in a demixing transition and unlike pairs form in both

cases. The instability manifests itself through a pronounced peak in the contact value

of the unlike partial RDF which is strongly size-dependent in the experiment and

keeps growing as the simulation evolves without ever reaching convergence towards a

stable value. This observation tells us that the fermionic character of the simplest

constituent of matter is essential in nature to be able to have a stable matter. On the

other hand, if one uses nonquantum statistical mechanics, one must regularize

the Coulomb potential at short range, for example through the addition of a hard

core to the otherwise pointwise particles.3,4 Even if in the relativistic regime it is

plausible to talk about an electron radius, attempts to model the electron as a

nonpoint particle are considered ill-conceived and counter-pedagogic.22

In order to have a stable matter, it is necessary that it is globally neutral and that

it is made up of at least one fermionic species. Physical realizations of our model are

nonrelativistic electron–positron plasma produced in the laboratory15 and electron–

hole plasma in semiconductors.16 Of course, in the numerical experiment we do not

have the physical limitations that occur in a laboratory. This allowed us to inquire
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into also the mixture with one bosonic or even both bosonic components. Another

interesting issue where our study could become relevant is atom and molecule for-

mation. In its simplest setting it involves the study of an electron–proton mixture.

Since the mass of an electron is three orders of magnitude smaller than the mass of a

proton, the degeneracy temperature of the electron species is three orders of mag-

nitude smaller than the one of the nuclei, at a given density. Therefore, it is very

unlikely that an electron, with a world-line with many particle exchanges will bind to

a nucleus which has a world-line with many less particle exchanges. In order for this

to occur we have to go down to temperatures kBTI � e2=2a0 ¼ 1Ry and electron

densities such that TF � TI , i.e. n � 0:048 or rs � 1:7.21 Molecules may form at even

lower temperatures. Nonetheless in our stable purely fermionic mixture with an equal

species mass, we see already at the chosen thermodynamic state, the unlike species

binding and a spontaneous symmetry breaking for like species bindings in a demixing

transition.23–25

We intend to adopt this method to simulate the two-component plasma in a

curved surface26–29 in the near future. For example, it could be interesting to study

the two-component plasma on the surface of a sphere with a magnetic monopole at

the center.30
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