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Affine quantization, which is a parallel procedure with canonical quantization, needs
to use its principal quantum operators, most simply D = (PQ + QP )/2 and Q 6= 0,

to represent appropriate kinetic factors, normally P 2, which involve only one canonical

quantum operator. The need for this requirement stems from the quantization of selected
problems that require affine quantization to achieve valid Monte Carlo results. This task

is resolved for introductory examples as well as examples that involve scalar quantum

field theories.
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1. Introduction

In our previous papers, where some suitable Monte Carlo (MC) calculations have

been reported, it was established that the quantum procedure called affine quan-

tization (AQ) finds “nonfree” results for the model ϕ4
4,1,2 while identical studies,

which used canonical quantization (CQ), have only found “free” results, as if the

coupling constant had been zero.3–7 After a careful comparison between the pro-

cedures of both CQ and AQ, a detailed MC study of the model (ϕ2 − Φ2)24 is
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presented. While the differences between AQ and CQ for the first model are signif-

icant, the differences between AQ and CQ for the second model are much smaller,

and a detailed study has found the reason why that could happen. Even if the AQ

and CQ results for the second model are rather close, only one of those results can

be physically correct.

A general effort to transform a variety of affine expressions opens up a variety

of problems regarding their interaction terms and our present work was designed

to do just that.

MC studies are greatly simplified by transforming affine variables back into

canonical variables, so the π2 can join (
∑
j dϕ/dxj)

2 and imaginary time, to ensure

a vast simplification of the MC work. Such a transformation from affine to equivalent

canonical variables being required to achieve nontrivial results.

2. Some Relations Involving the Quantum Operators P , Q, and D

We need [Q,P ] = i~11, F = F (Q) 6= 0, and we define D = [PF + FP ]/2, so that

P †F = PF .a Then we examine

2[F,D] = F (PF + FP )− (PF + FP )F

= FPF + FFP − PFF − FPF = FFP − PFF = [F 2, P ]. (1)

This leads to [F,D] = [F 2, P ]/2 = i~(F 2)′/2, where the prime denotes a deriva-

tive with respect to Q. As a familiar example, choose F (Q) = Q, then [Q,D] =

[Q2, P ]/2 = i~ (Q2)′/2 = i~Q, analogues to the Lie algebra of the affine group,8

and from which AQ got its name.

3. The Kinetic Factor in Hamiltonians

In simple problems, the most commonly chosen classical kinetic factor is p2. In that

realm, we can choose f(q) = 1/g(q) 6= 0 (g(q) 6= 0 is added because 1/f(q) is very

often used). Now we define d = pf(q) and we then recover p2 from d2g2 = d2/f2 =

p2. Admittedly, this is utterly trivial. However, when we quantize these variables

to P , D = (PF +FP )/2, F = F (Q) 6= 0 and G = G(Q) = 1/F (Q) 6= 0, difficulties

can arise.

The quantum kinetic term (with ~ = 1) in affine variables is DG2D. This

expression, helped by FP − PF = i F ′ and GP − PG = iG′, leads to

4DG2D = (PF + FP )GG(PF + FP )

= PP + FPGGPF + FPGP + PGPF

= PP + (PF + iF ′)GG(FP − iF ′) + (PF + iF ′)GP + PG(FP − iF ′)

aAs AQ permits, the dilation operator, D, may take different forms, namely, D = [PF (Q) +

F (Q)P ]/2, for a variety of F (Q) 6= 0 functions — chosen such that P †F (Q) = PF (Q) — and
which are of assistance in solving various problems.
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= 4PP + 2i(F ′GP − PGF ′) + F ′GGF ′

= 4PP − 2(F ′G)′ + (F ′)2G2. (2)

Restoring ~, it follows that

DG2D = P 2 + (1/4)~2[(F ′)2G2 − 2(F ′G)′]. (3)

As a check on this expression, the example in which F (Q) = Q and thus G(Q) =

1/Q, leads to P 2 + (3/4)~2/Q2, which is the result previously found when F (Q) =

Q. There is every reason to accept this latter equation as the proper kinematical

operator for the half-harmonic oscillator.9–11

4. Application to Some Field Theory Examples

4.1. A straightforward example for ϕp
n

Regarding our field theory examples, our procedures will naturally encounter δ(0)

divergences. A scaling procedure that eliminates such divergences will be intro-

duced as well as illustrated. As our fist example, we choose the classical canonical

kinematic field π(x)2, for which we choose the dilation field κ(x) = π(x)ϕ(x), with

ϕ(x) 6= 0. The classical Hamiltonian in affine variables is

H1 =

∫ {
1

2
[κ(x)2/ϕ(x)2 + (∇ϕ(x))2 +m2ϕ(x)2] + g ϕ(x)p

}
dsx, (4)

where p = 4, 6, 8, . . . is the interaction power and n = s+ 1 is the number of space–

time dimensions. The advantage of this pair of variables is that 0<ϕ(x)−2<∞
which implies that 0<ϕ(x)p<∞, for all p, and thus the Hamiltonian does not

experience any non-renormalizability.

Adopting the message from the half-harmonic oscillator, the affine quantum

Hamiltonian for this model is

H1 =

∫ {
1

2
[κ̂(x)(ϕ̂(x))−2κ̂(x) + (∇ϕ̂(x))2 +m2ϕ̂(x)2] + g ϕ̂(x)p

}
dsx, (5)

where

κ̂(x)(ϕ̂(x)−2)κ̂(x) = π̂(x)2 + (3/4)~2δ(0)2s/ϕ(x)2. (6)

The origin of δs(0) =∞ is simply the fact that [ϕ̂(x), π̂(x)] = i~ δs(0)11.

In a sense, this result is strange. For example, for a single classical variable

(pq)2 <∞ and |QP − PQ|2 = ~211. However, for a classical field (π(x)ϕ(x))2 <∞
while |ϕ̂(x) π̂(x)− π̂(x) ϕ̂(x)|2 =∞ ~211. When approximated, as for an integration,

then ϕ̂(x)→ ϕ̂k and π̂(x)→ π̂k, where instead of the continuum that x represents,

k identifies different points on a discrete lattice. This leads to [ϕ̂k, π̂k] = i~ a−s11,

where a is a tiny spatial distance between neighboring lattice points. In preparation

for our integration, just as every integral involves a continuum limit of an appropri-

ate summation, these expressions are used in MC calculations which involve proper

sums for their “integrals”. All of these are designed to provide a path integral
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quantization, and, when necessary, their sums need to be regularized. In our case,

the regularized version becomes appropriately “scaled”: specifically ϕk → a−s/2ϕk,

πk → a−s/2πk, κk → a−sκk, g → as(p−2)/2 g, and the regularized dsx → as may

also be scaled as as → a2s.

Using such scaling, in an AQ formulation with MC, has led to a “nonfree” result

for the scalar field ϕ4
4.1 However, a CQ formulation with MC, along with analytic

studies, has led to a “free” result.1,3–7

4.2. A less common example using CQ and AQ

With first using CQ for the next example, our next classical Hamiltonian is given by

H2 =

∫ {
1

2
[π(x)2 + (∇ϕ(x))2 +m2ϕ(x)2] + g (ϕ(x)2 − Φ2)r

}
dsx, (7)

where the interaction power has been changed to r = 2, 4, 6, . . . , and n = s + 1 is

the same as before. This unusual interaction term deserves a new dilation variable,b

and in this section we choose κ(x) = π(x) (ϕ(x)2 − Φ2), where (ϕ(x)2 − Φ2) 6= 0.

In this case, the classical Hamiltonian in affine variables becomes

H3 =

∫ {
1

2
[κ(x)2/(ϕ(x)2 − Φ2)2 + (∇ϕ(x))2 +m2ϕ(x)2]

+ g (ϕ(x)2 − Φ2)r
}
dsx. (8)

In these variables, 0 < (ϕ(x)2−Φ2)−2 <∞, which implies that 0 < (ϕ(x)2−Φ2)r <

∞, for all r, thereby eliminating any non-renormalizablity.

Next we find that the quantum Hamiltonian, using affine variables and

Schrödinger’s representation, is given by

H3 =

∫ {
1

2
[κ̂(x)(ϕ(x)2 − Φ2)−2κ̂(x) + (∇ϕ(x))2 +m2ϕ(x)2]

+ g (ϕ(x)2 − Φ2)r
}
dsx, (9)

and this expression will become more useful after the kinetic term is fully analyzed.

In order to obtain a valid quantum Hamiltonian for this model, we are first drawn

back to Eq. (3) in Sec. 2, which reads DG2D = P 2 + (1/4)~2[(F ′)2G2 − 2(F ′G)′].

In the present case, temporally ignoring (x) and still using Schrödinger’s rep-

resentation, F = (ϕ2 − Φ2) and G = 1/F . It follows, that F ′ = 2ϕ and

G′ = −2ϕ/(ϕ2 − Φ2)2. We also need (F ′)2G2 = 4ϕ2/(ϕ2 − Φ2)2 and −2(F ′G)′ =

−4/(ϕ2 − Φ2) + 8ϕ2/(ϕ2 − Φ2)2 = 4(ϕ2 + Φ2)/(ϕ2 − Φ2)2. Hence, for this model,

the kinematic factor is

κ̂(x)(ϕ(x)2 − Φ2)−2κ̂(x)

= π̂(x)2 + ~2δ2s(0)(2ϕ(x)2 + Φ2)/(ϕ(x)2 − Φ2)2. (10)

bBeing able to change the dilation variable is an important feature of AQ.
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As was the case in Sec. 3.1, scaling can eliminate the δ2s(0) factor by including the

additional scaling factor Φ2 → a−sΦ2, and changing the scaling of g to g → as(r−1)g.

5. Lattice Formulation of the Field Theory

We used a lattice formulation of the AQ field theory stemming from the Hamiltonian

of Eq. (9) for r = 2 and s = 3 using the scaling ϕ→ a−s/2ϕ,Φ→ a−s/2Φ, g → asg

already employed in Refs. 2, 12, 13. The theory considers a real scalar field ϕ taking

the value ϕk on each site of a periodic, hypercubic, n-dimensional lattice of lattice

spacing a, our ultraviolet cutoff, and periodicity L = Na. Using the usual classical

expression π = dϕ/dt, where t is imaginary time, for the momentum field, the affine

action, S =
∫
H3 dx0, with x0 = ct where c is the speed of light constant, is then

approximated on the lattice by

S[ϕ]/an−s ≈ 1

2

{∑
k,µ

a−2(ϕk − ϕk+eµ)2 +m2
∑
k

ϕ2
k

}
+
∑
k

g (ϕ2
k − Φ2)2

+
1

2

∑
k

~2
2ϕ2

k + Φ2

(ϕ2
k − Φ2)2

, (11)

where eµ is 1 in the +µ direction and 0 else. This is known as the primitive approx-

imation for the action and could be improved in various ways.14 For the CQ field

theory, the last term in (11), proportional to ~2 should be dropped.

In this work, we are interested in reaching the continuum limit by taking Na

fixed and letting N →∞ at fixed volume Ls and absolute temperature T = 1/kBL

with kB the Boltzmann’s constant. We will always work in natural units c = ~ =

kB = 1.

6. PIMC Results

We performed path integral MC14–17 calculation for the AQ field theory described

by Eq. (11) for n = 3 + 1 and Φ = 1, and compared it with the corresponding

CQ field theory. In particular, we calculated the renormalized coupling constant gR
(which must be non-negative due to Lebowitz inequality) and mass mR defined in

Eqs. (4.3) and (4.5) of,18 respectively. This will allow us to explore the behavior of

the renormalized system, for a given set of parameters m, g, as a function of N at

fixed volume and temperature.

Following Freedman et al.,3 for each N and g, we adjusted the bare mass m

in such a way to maintain the renormalized mass approximately constant mR ≈ 3

to within a few percent (in all cases less than 25%). Differently from our previous

study1 with the unscaled version of the affine field theory we did not need to choose

complex m in order to fulfill this constraint, as shown in Table 1. In fact, our

present CQ model can be obtained from the ϕ4
4 model studied in Ref. 1 by changing

m2 → m2 − 4gΦ2 ≡ M2 which will become negative for g big enough. From the
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Table 1. Choice of the bare mass m in the simulations for CQ and AQ cases. Also shown
is M2 = m2 − 4gΦ2 and m2/4gΦ2.

CQ AQ

N g m M2 m2/4gΦ2 m M2 m2/4gΦ2

4

12 7.00 1.000 1.021 6.65 −3.777 0.921

50 13.70 −12.31 0.938 13.55 −16.397 0.918

200 27.20 −60.16 0.925 27.10 −65.590 0.918
1000 61.25 −248.438 0.938 61.20 −254.56 0.936

6

12 7.20 3.840 1.080 6.80 −1.76 0.963
50 14.00 −4.000 0.980 13.75 −10.937 0.945

200 27.50 −43.750 0.945 27.40 −49.240 0.938

1000 61.57 −209.135 0.948 61.53 −214.059 0.946

10

12 7.40 6.760 1.141 7.00 1.000 1.021

50 14.20 1.640 1.008 14.00 −4.000 0.980
200 27.80 −27.160 0.960 27.80 −27.160 0.960

1000 62.10 −143.590 0.964 62.00 −156.000 0.961

12

12 7.40 6.760 1.141 7.30 5.29 1.110

50 14.20 1.640 1.008 14.20 1.640 1.008

200 27.90 −21.590 0.973 27.90 −21.590 0.973
1000 62.20 −131.160 0.936 62.20 −131.160 0.936

15

12 7.40 6.760 1.141 7.40 6.760 1.141
50 14.40 7.36 1.037 14.20 1.640 1.008

200 28.10 −10.390 0.987 27.90 −21.590 0.973

1000 62.40 −106.240 0.973 62.40 −106.240 0.973

table, we can see how for the chosen cases m2/4g∼Φ2, meaning that the minima

ϕ± = ±
√
−M2/4g of the potential profile V[φ] = m2ϕ2/2 + g (ϕ2 − Φ2)2 are far

from ±Φ, where the effective potential term, (2ϕ2 + Φ2)/2(ϕ2 − Φ2)2, stemming

from the kinetic part of the action (the last term in Eq. (11) proportional to ~2)

diverges. As a consequence, CQ will be very similar to AQ, which means that the

required bare masses to reach a given renormalized mass in the two cases are very

close. Then we measured the renormalized coupling constant gR defined in Refs. 1,

18 for various values of the bare coupling constant g at a given small value of the

lattice spacing a = 1/N (this corresponds to choosing a fixed absolute temperature

kBT = 1 and a fixed volume L3 = 1) as already explained for example in Refs. 1,

18. With Na and mR fixed, as a was made smaller, whatever change we found in

gRm
n
R as a function of g could only be due to the change in a. We generally found

that a depression in mR produced an elevation in the corresponding value of gR
and vice-versa. The results are shown in Fig. 1 for the scaled affine action (AQ

case) (11), where, following Freedman et al.3 we decided to compress the range of

g for display, by choosing the horizontal axis to be g/(50 + g). For comparison we

also show in Fig. 2 the results for canonical quantized action (CQ case) which is

given by Eq. (11) without the last term proportional to ~2. The constraint mR ≈ 3

was not easy to implement since for each N and g we had to run the simulation

several (5–10) times with different values of the bare mass m in order to determine
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Fig. 1. AQ case. We show the renormalized mass mR ≈ 3 (top panel), the renormalized coupling

constants gR (central panel), and gRmn
R (bottom panel) for various values of the bare coupling

constant g at decreasing values of the lattice spacing a = 1/N (N →∞ continuum limit) for the
scaled affine covariant Euclidean scalar field theory described by the lattice action of Eq. (11) for

n = 3 + 1 and Φ = 1. The lines connecting the simulation points are just a guide for the eye.

The lack of error bars in the data presented is justified by the fact that the errors are dominated
not from the statistical ones but rather from the ones due to the adjustments in the bare mass

required by the trial and error procedure suggested by Freedman et al.3 This error is very hard
to be estimated.
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Fig. 2. CQ case. We show the renormalized mass mR ≈ 3 (top panel), the renormalized coupling

constants gR (central panel), and gRmn
R (bottom panel) for various values of the bare coupling

constant g at decreasing values of the lattice spacing a = 1/N (N →∞ continuum limit) for the
canonical covariant Euclidean scalar field theory described by the lattice action of Eq. (11) without

the last term proportional to ~2, for n = 3 + 1 and Φ = 1. The lines connecting the simulation

points are just a guide for the eye. The lack of error bars in the data presented is justified by the
fact that the errors are dominated not from the statistical ones but rather from the ones due to

the adjustments in the bare mass required by the trial and error procedure suggested by Freedman
et al.3 This error is very hard to be estimated.
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the value which would satisfy the constraint mR ≈ 3. In our simulations we always

used 3×107 MC sweeps (where one sweep moves all the Nn field points which took

about one week of computer time for the N = 15 case). We estimated that it took

roughly 10% of each run in order to reach equilibrium from the arbitrarily chosen

initial field configuration, for each set of parameters.

As we can see from our figures, the renormalized coupling constant gR(mR)4

of the scaled affine version (AQ of Fig. 1) behaves very similarly to the one of the

canonical version (CQ of Fig. 2) going toward the continuum limit, taken at fixed

volume and temperature, when the ultraviolet cutoff is gradually removed (Na = 1

and N → ∞). The only difference is at g = 50 − 100 where in the AQ case the

N = 12 results for the renormalized coupling fall above the ones for N = 10, unlike

what happens in the CQ case. Note that for the CQ case the results at N = 12, 15

are new, since Freedman et al.3 and ourselves1 only previously studied up to N = 10

discretization points.

During our simulations, we kept under control also the vacuum expectation

value of the field which is not diverging going toward the continuum limit, like what

was happening in Ref. 12 but not in Ref. 19. Choosing the initial configuration with

ϕ = 0 at all lattice points, when M2 is not too negative the symmetry ϕ→ −ϕ is

not broken and we find 〈ϕ〉∼0.

We also studied the behavior of the AQ case when choosing a much lower

renormalized mass mR∼1/10. In this case, the necessary bare mass is such that

m2/4g � Φ2, at all studied values of the bare coupling g = 12, 50, 200, 1000. In

particular, the potential profile V becomes a symmetric double well with the two

minima, at ϕ±, near the two repulsive spikes localized at ϕ = ±Φ and forbidding

paths to access the minima of the double well.c In this case, we found that the paths

tend to be very localized just outside of the forbidden region due to the repulsive

spikes. As a consequence, we found gR∼2 for all N . So in this case, AQ is very

different from CQ and the bare masses necessary to reach the same renormalized

mass are very different. Note that when M2 > 0 the two repulsive spikes do not

forbid the path from sitting at the minimum of the potential profile at ϕ = 0 and

as a consequence AQ and CQ are very similar. Note also that in the limit Φ → 0

the situation is inverted and for m2 positive, AQ is very different from CQ, whereas

for m2 negative, AQ is very similar to CQ.

7. Conclusions

We studied through path integral MC a plausible kinetic factor in AQ of a scalar

covariant Euclidean field theory of mass m subject to a potential energy of the

form g(ϕ2 − Φ2)2 in 3 + 1 space–time dimensions, which is known to suffer from

asymptotic freedom in the continuum limit when it is quantized through CQ. This

cThe case when the classical minima of the potential and the extra spikes in the potential of

the affine Hamiltonian are close together has been already studied in several of our previously
published papers.1,2,13,18,20
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kinetic factor reduces to the usual one previously introduced in Refs. 1, 2, 12, 13,

18, 19 in the limit Φ → 0, apart from the multiplicative coefficient. Moreover, its

behavior is similar to the one found in the Φ → 0 limit in the sense that it gives

rise to an additive effective potential term which diverges in a neighborhood of the

minima in the potential therefore producing a forbidden region for the field paths

exactly where it would naturally sit in a CQ framework. This exclusion of the field

path from the minima of the potential renders the AQ version of the field theory

asymptotically non-free in the continuum limit.

Our numerical results clearly show how the two field theories obtained through

CQ and AQ behave very differently whenever m2/4g � Φ2. Otherwise they are

very similar.
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