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Following a modest comparison between canonical and affine quantization, which points
to positive features in the affine procedures. We prove through Monte Carlo analysis

that the covariant Euclidean scalar field theory, ϕr
n, where r denotes the power of the

interaction term and n = s + 1 where s is the spatial dimension and 1 adds imaginary

time, such that r = n = 4 can be acceptably quantized using scaled affine quantization

and the resulting theory is nontrivial, unlike what happens using canonical quantization.
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1. Introduction

Covariant Euclidean scalar field quantization, henceforth denoted ϕrn, where r is

the power of the interaction term and n = s + 1 where s is the spatial dimen-

sion and 1 adds imaginary time, such that r < 2n/(n − 2) can be treated by

canonical quantization (CQ), while models such that r > 2n/(n− 2) are trivial.1–5

Models such as r = 2n/(n − 2), e.g. r = n = 4, also are nonrenormalizable using
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canonical quantization.1 However, there exists a different approach called affine

quantization (AQ)6,7 that promotes a different set of classical variables to become

the basic quantum operators and it offers different results, such as models for which

r > 2n/(n− 2), which has been recently correctly quantized ϕ12
3 .8 In this work, we

show, with the aid of a Monte Carlo (MC) analysis, that one of the special cases

where r = 2n/(n− 2), specifically the case r = n = 4, can be acceptably quantized

using affine quantization.9–11

This program was already carried on with partial success in Refs. 9 and 10,

where, however, a diverging value of the vacuum expectation value of the field was

found. We show here that using a simple rescaling of the affine quantized theory

allows to solve this shortcoming keeping the field theory nontrivial.

2. A Comparison Between Canonical Quantization and

Affine Quantization for Fields

2.1. Canonical quantization of scalar fields

Let us begin with the classical Hamiltonian for a single field ϕ(x)

H(π, ϕ) =

∫ {
1

2

[
π(x)2 + (∇ϕ(x))2 +m2ϕ(x)2

]
+ gϕ(x)r

}
dsx , (1)

where n = s + 1 is the number of space–time variables, and r is a positive, even,

integer. When g is zero, the remaining expression involves a domain in which a

full set of variables, i.e. π(x) and ϕ(x), leads to a finite Hamiltonian value. If

g = 0 → g > 0, there are two possible results. If r < 2n/(n − 2), then the domain

remains the same. However, if r ≥ 2n/(n − 2), then there is a new domain that

is smaller than the original domain because the interaction term
∫
ϕ(x)r dsx =∞

leads to a reduction of certain fields. The fields that cause that divergence are not

ϕ(x) = ∞, because that would have eliminated the original domain when g = 0.

The only way for
∫
ϕ(x)r dsx = ∞ is, for example, given by ϕ(x) = 1/[(x − c)2]k

where k is small enough so that the gradient term will diverge sooner than the

mass term, while r > 2 is big enough so that
∫
ϕ(x)r dsx =∞. Such behavior leads

to immediate results in perturbation infinities in a power series of g, leading to a

nonrenormalizable process, for which quantum efforts, using canonical quantization,

collapse to “free” results, despite that g > 0, as all that is continuously connected

to the original free theory where g = 0.

This analysis is confirmed with several efforts. As examples, we note that MC

and analytical methods have confirmed that the model ϕ4
4 leads only to “free”

results,1–4 as well as the model ϕ12
3 also leads to “free” results.8 Having seen what

CQ can show us what it can do, now let us turn to AQ.
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2.2. Affine quantization of scalar fields

The classical affine variables are κ(x) ≡ π(x)ϕ(x) and ϕ(x) 6= 0. The reason we

insist that ϕ(x) 6= 0 is because if ϕ(x) = 0 then κ(x) = 0 and π(x) cannot help.

We next introduce the same classical Hamiltonian we chose before now expressed

in affine variables. This leads us to

H ′(κ, ϕ) =

∫ {
1

2

[
κ(x)2ϕ(x)−2 + (∇ϕ(x))2 +m2ϕ(x)2

]
+ gϕ(x)r

}
dsx , (2)

in which ϕ(x) 6= 0 is an important fact. With these variables we do not let ϕ(x) =∞
for the reasons made in the CQ story, but now we must forbid ϕ(x) = 0 which

would admit ϕ(x)−2 = ∞. The fact that 0 < ϕ(x)−2 < ∞, it follows that, using

these variables, 0 < ϕ(x)r <∞, with any 2 < r <∞. This essential result leads to

the fact that these AQ bounds on ϕ(x) forbid any nonrenormalizability , a “disease”

which plagues the CQ analysis. With AQ, this new insight implies that every model

ϕrn does not become a “free” result, but leads to an appropriate “nonfree” result.

Specifically, this assertion should lead to “nonfree” results for ϕ12
3 and ϕ4

4, as MC

results, have already shown.8–11

What follows in the coming sections is additional MC studies using AQ proce-

dures. As the former story promises, that study will definitely succeed.

3. Lattice Formulation of the Field Theory

We used a lattice formulation of the AQ field theory studied in Eq. (8) of Ref. 9

using the scaling ϕ → a−s/2ϕ, g → asg, ε → a−sε where ε is the regularization

parameter. The theory considers a real scalar field ϕ taking the value ϕ(x) on

each site of a periodic, hypercubic, n-dimensional lattice of lattice spacing a, our

ultraviolet cutoff and periodicity L = Na. The affine action for the field, S′ =∫
H ′ dx0 (with x0 = ct where c is the speed of light constant and t is imaginary

time), is then approximated by

S′[ϕ]

an−s
≈ 1

2

{∑
x,µ

a−2[ϕ(x)− ϕ(x+ eµ)]2 +m2
∑
x

ϕ(x)2

}

+
∑
x

g ϕ(x)r +
3

8

∑
x

~2
1

ϕ(x)2 + ε
, (3)

where eµ is a vector of length a in the +µ direction.

In this work, we are interested in reaching the continuum limit by taking Na

fixed and seeking N →∞ at fixed volume Ls and absolute temperature T = 1/kBL

with kB the Boltzmann’s constant.

3.1. MC results

We repeated the path integral MC12–15 calculation for the AQ field theory pre-

viously done in Ref. 9 for the case r = n = 4 using now the scaling ϕ → a−s/2ϕ,

2250029-3



March 5, 2022 14:56 IJMPA S0217751X22500294 page 4

FA

R. Fantoni & J. R. Klauder

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

0.0 0.2 0.4 0.6 0.8 1.0

m
R

g/(50+g)

N=4

N=6

N=10

N=12

N=15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0

g
R

g/(50+g)

N=4

N=6

N=10

N=12

N=15

0

10

20

30

40

50

60

0.0 0.2 0.4 0.6 0.8 1.0

g
R

(m
R

)n

g/(50+g)

N=4

N=6

N=10

N=12

N=15

FIG. 1. (color online) We show the renormalized mass mR ≈ 3 (top panel), the renormalized

coupling constants gR (central panel), and gRm
n
R (bottom panel) for various values of the bare

coupling constant g at decreasing values of the lattice spacing a = 1/N (N → ∞ continuum limit)

for the scaled affine φ4
4 covariant euclidean scalar field theory described by the action in Eq. (3)

for r = n = 4. The lines connecting the simulation points are just a guide for the eye.

6

Fig. 1. The renormalized mass mR ≈ 3 (top panel), the renormalized coupling constants gR
(central panel), and gRmn

R (bottom panel) for various values of the bare coupling constant g at
decreasing values of the lattice spacing a = 1/N (N →∞ idealized limit) for the scaled affine ϕ4

4

covariant Euclidean scalar field theory described by the action in Eq. (3) for r = n = 4. The lines

connecting the simulation points are just a guide for the eye.
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g → asg, ε → a−sε, which brings to using the lattice formulation for the action

of Eq. (3). In particular, we calculated the renormalized coupling constant gR and

mass mR defined in Eqs. (11) and (13) of Ref. 9, respectively.

Following Freedman et al.,1 for each N and g, we adjusted the bare mass m

in such a way to maintain the renormalized mass approximately constant mR ≈
3,a to within a few percent (in all cases less than 10%), and we measured the

renormalized coupling constant gR defined in Refs. 8 and 9 for various values of

the bare coupling constant g at a given small value of the lattice spacing a = 1/N

(this corresponds to choosing an absolute temperature kBT = 1 and a fixed volume

L3 = 1). With Na and mR fixed, as a was made smaller, whatever change we found

in gRm
n
R as a function of g could only be due to the change in a. We generally

found that a depression in mR produced an elevation in the corresponding value of

gR and vice versa. The results are shown in Fig. 1 for the scaled affine action (3)

in natural units c = ~ = kB = 1 and ε = 10−10 (the results are independent from

the regularization parameter as long as this is chosen sufficiently small), where,

following Freedman et al.,1 we decided to compress the range of g for display, by

choosing the horizontal axis to be g/(50 + g). The constraint mR ≈ 3 was not easy

to implement since for each N and g we had to run the simulation several times

with different values of the bare mass m in order to determine the value which

would satisfy the constraint mR ≈ 3.

These results should be compared with the results of Fig. 1 of Freedman et al.1

where the same calculation was done for the canonical version of the field theory.

As we can see from our figure, contrary to the figure of Freedman, the renormalized

coupling constant of the affine version remains far from zero in the continuum limit

when the ultraviolet cutoff is removed (Na = 1 and N → ∞) for all values of the

bare coupling constant. Here, unlike in the canonical version used by Freedman, the

diminishing space between higher N curves is a pointer toward a nonfree ultimate

behavior as N → ∞ at fixed volume. Moreover as one can see the N = 15 results

for the renormalized coupling fall above the ones for N = 12.

During our simulations we kept under control also the vacuum expectation value

of the field which in all cases was found to vanish in agreement with the fact that

the symmetry ϕ→ −ϕ is preserved.

4. Conclusions

In conclusion, we performed a path integral Monte Carlo study of the properties

(mass and coupling constant) of the renormalized covariant Euclidean scalar field

theory ϕ4
4 quantized through scaled affine quantization. As shown in Ref. 11 the

vacuum expectation values for the field and the two-point function are well defined.

We show here that, unlike what happens for the theory quantized through canonical

aDifferently from our previous study9 with the unscaled version of the affine field theory we did
not need to choose complex m in order to fulfill this constraint. Moreover, the needed m was only
very slightly depending on g.
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quantization, the renormalized coupling constant gR does not tend to vanish in

the continuum limit, where we remove the ultraviolet cutoff at fixed volume. This

success of affine quantization to produce a well defined, renormalizable, nontrivial,

“nonfree” quantum field theory is one of its merits and benefits.
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