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PACS 68.43.Hn – Structure of assemblies of adsorbates (two- and three-dimensional clustering)
PACS 61.20.Qg – Structure of associated liquids: electrolytes, molten salts, etc.
PACS 64.70.pv – Colloids

Abstract – The restricted primitive model with nonadditive hard-sphere diameters is shown to
have interesting and peculiar clustering properties. We report accurate calculations of the cluster
concentrations. Implementing efficient and ad hoc Monte Carlo algorithms we determine the effect
of nonadditivity on both the clustering and the gas-liquid binodal. For negative nonadditivity,
tending to the extreme case of completely overlapping unlike ions, the prevailing clusters are
made of an even number of particles having zero total charge. For positive nonadditivity, the
frustrated tendency to segregation of like particles and the reduced space available to the ions
favors percolating clusters at high densities.

Copyright c© EPLA, 2013

Ionic soft matter [1,2] is a class of conventional
condensed soft matter whose interactions are dominated
by electrostatics crucially affecting its physical properties.
Among the most popular representatives of such a class of
materials are natural and synthetic saline environments,
like aqueous and nonaqueous electrolyte solutions and
molten salts, including room-temperature ionic liquids,
as well as a variety of polyelectrolytes and colloidal
suspensions. Equally well known are biological systems of
proteins.
The simplest fluid modeling an ionic colloidal suspen-

sion is the restricted primitive model (RPM) [3] a binary
mixture of uniformly charged hard spheres (HS) for which
the like-unlike collision diameter between a particle of
species 1, of diameter σ11 = σ, and a particle of species 2
of diameter σ22 = σ, is equal to the arithmetic mean
σadd12 = (σ11+σ22)/2 = σ. The two species are of charge ±q
with equal concentrations to ensure charge neutrality, and
the particles move in a medium of fixed dielectric constant
ǫ. The phase diagram of this model has been widely stud-
ied both within computer experiments [4–10] and through
analytical theories [11–18].
From these studies emerged how, in the vapor phase

of this fluid, and thus in the determination of the phase
diagram, an important role is played by association and
clustering. In an old paper, [19] one of us studied a more

general RPM fluid where it is allowed for size nonadditiv-
ity amongst the particles: the like-unlike collision diame-
ter differs from σadd12 by a quantity Δ= (σ12−σadd12 )/σadd12
called the nonadditivity parameter. It was suggested
through the use of integral equation theories, that such
a fluid might have a dramatic change of its clustering
properties. The nonadditivity of the HS diameters does
not destroy the simplifying symmetry of the model but
it introduces modifications of the properties of the pure
RPM model making it a paradigm for the self-assembly of
isotropic particles and a challenge to present-day theories
of fluids. There seems to be a lack of literature on this
subject excepted for ref. [20].
In this letter, we reconsider such a model fluid by

using more direct, highly efficient numerical simulations.
In particular we analyze the clustering properties outside
of the gas-liquid coexistence region. As we will see the
clustering turns out to be greatly affected by the nonaddi-
tivity parameter. To the best of our knowledge this is the
first time that such a model fluid is studied with numerical
simulations. The debate on the importance of clustering
in the RPM is rejuvenated by studying this new model
fluid.
The model system here considered may be realized

experimentally through a colloid-star polymer mixture
where both species are charged [21,22] and may be relevant
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for modeling room temperature ionic liquids [23–26]. It is
the RPM of nonadditive charged hard spheres (NACHS).
The RPM consists of N/2 uniformly charged hard spheres
of diameter σ carrying a total charge +q and N/2
uniformly charged hard spheres of the same diameter
carrying a total charge −q. The spheres are moving
in a dielectric continuum of dielectric constant ǫ. The
interaction between ions of species i and j a distance r
apart is given by

βφij(r) =

⎧

⎨

⎩

+∞, r� σij ,
qiqj
kBTǫr

, r > σij ,
i, j = 1, 2, (1)

where β = 1/kBT with T the absolute temperature and kB
Boltzmann’s constant, qi the charge of an ion of species
i. The ions form a mixture of NACHS, i.e., σ11 = σ22 =
σ and σ12 = σ(1+Δ), with Δ>−1 the nonadditivity
parameter. A thermodynamic state is completely specified
by the reduced density ρ∗ = ρσ3 =Nσ3/V , where V is
the volume containing the fluid, the reduced temperature
T ∗ = kBTǫσ/q

2, and the nonadditivity parameter Δ.
We used canonical NV T Monte Carlo (MC) simulations

to study the fluid in a cubic simulation box of volume
V =L3 with periodic boundary conditions. The long range
of the 1/r interaction was accounted for using the Ewald
method [27].
We start from a simple cubic configuration of two

crystals one made of species 1 and one made of species
2 juxtaposed. The maximum particle displacement, the
same along each direction, is determined during the first
stage of the equilibration run in such a way to ensure an
average acceptance ratio of 50%. We need around 105 MC
steps (MCS) in order to equilibrate the samples and 106

MCS/particle for the statistics.
During the simulation we perform a cluster analysis

in the vapor phase. After each 100MCS we determine
the number Nn of clusters made of n particles, so that
∑

n nNn =N . We assume [28,29] that a group of ions
forms a cluster if the distance r, calculated using periodic
boundary conditions, between a particle of species i of
the group and at least one other particle of species j is
less then some fixed value, i.e., r < σij + δσ where δ is
a parameter1. In all our simulations we chose δ= 0.1 (in
ref. [5] a detailed study of the sensitivity of the clustering
properties on this parameter is carried out for the pure
RPM fluid). Then we take the average of these numbers
〈Nn〉. Here Qn = n〈Nn〉/N gives the probability that a
particle belongs to a cluster of size n. To establish a
criterion for percolation, we also find clusters without
using periodic boundary conditions. One of these clusters
percolates if, amongst its particles, there are two that do
not satisfy the cluster condition as a pair, but do satisfy
the condition if periodic boundary conditions are used.

1Many different ways of defining a cluster have been proposed
[12,15,30–32] since the Bjerrum theory [33] of ionic associations first
appeared. Our choice corresponds to the geometric one of Gillan [12].

In fig. 1 we simulated the fluid at a temperature T ∗ = 0.1
above the critical temperature, T ∗c ≈ 0.05, of the pure
RPM [6,9,10]. We see how, at high density, a positive
nonadditivity is responsible for a gain of clustering in the
fluid, which tends to admit percolating clusters also due
to the fact that a positive nonadditivity pushes the fluid
at densities closer to the maximum density attainable.
It is well known that in the neutral nonadditive hard-
sphere fluid a positive nonadditivity tends to demix the
mixture at lower densities as Δ increases [34–39], so in our
fluid we will have a competition between the tendency to
demix in the neutral nonadditive hard-sphere fluid and the
tendency to cluster in the RPM fluid. At ρ∗ = 0.45 both
the pure RPM and the Δ=+0.3 have percolating clusters.
Lowering the density we first reach a state, at ρ∗ = 0.3,
where the negative nonadditivity gives the same clustering
as the RPM and the positive nonadditivity gives higher
percolating clustering, then a state, at ρ∗ = 0.1, where the
positive nonadditivity gives the same clustering of RPM
and the negative nonadditivity a higher one, and finally
a state, at ρ∗ = 0.01, at low densities where a negative
nonadditivity increases the clustering over the RPM fluid
and a positive nonadditivity diminishes it. Summarizing,
for the fixed values of |Δ| used, we find, in agreement
with ref. [19], that: a) at high density and positive Δ
we have more clustering than in the additive model,
b) at high density and negative Δ we have less clustering
than in the additive model, c) at low density and positive
Δ we have less clustering than in the additive model,
d) at low densities and negative Δ we have more clustering
than in the additive model. These points can be explained
observing that a pair of unlike ions have a higher affinity
with negative Δ. Thus, in a bulk phase negative Δ favors
hetero-coordination. Clusters of a given number of ions
tend to be smaller when Δ is negative. As a result, at
low density (where excluded volume plays a small role),
the extra affinity due to negative Δ enhances cluster
formation. By contrast, at high densities, the increase in
available volume from the resulting hetero-coordination
with negative Δ has an important role, reducing the
density-driven imperative to form clusters in the negative
Δ case. The same arguments in reverse explain the
behavior of a system with positive nonadditivity where
now homo-coordination at high density is favored [19].
To qualitatively reproduce the curves with nonpercolat-

ing clusters we can use the Tani and Henderson cluster-
ing analysis [28,29,40] with an inter-cluster configurational
partition function the one of an ideal gas of clusters, in
reduced units, Zinter ≈ (V/σ3)Nt , where Nt =

∑nc
n=1Nn is

the total number of clusters and we assume to have only
clusters made of up to nc particles. Then the equations for
the equilibrium cluster concentrations are

〈Nn〉/N = λnzintran /ρ∗, n= 1, 2, . . . , nc, (2)

1 =

nc
∑

n=1

n〈Nn〉/N, (3)
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Fig. 1: (Color online) Clustering properties of the fluid at various values of nonadditivity and density. Nn are the number of
clusters made of n particles. We chose δ= 0.1. In the MC simulations we used N = 100 particles and a number of MCS= 107.
The insets allow α= 〈N1〉/N , the degree of dissociation, to be directly read off from the graph.

where zintran are the configurational intra-cluster partition
functions in reduced units with zintra1 = 2 and λ(= αρ∗/2)
is a Lagrange multiplier to be determined by eq. (3).
Moreover neglecting the excess internal energy of the
clusters we can approximate zintran ≈ (vn/σ3)(n−1)2n/n!
where vn is the volume of an n-cluster. Assuming further
the cluster to be in a closed packed configuration we can
approximate2 vn ≈ nσ3/

√
2. This simple approximation

is temperature independent and its usefulness is thereby
quite limited.
We checked the size dependence of the curves shown in

fig. 1 and saw that when we have no percolating clusters
the curve was unaffected by a choice of an higher number
of particles (up to 5000), while the curve changed in the
presence of percolating clusters. In this case we found that
a common curve is given by 〈Nx〉/N with x= n/N ∈ [0, 1].
Then, in order to satisfy the normalization condition,
1 =
∑

n n(〈Nn〉/N)≈
∫

dxxN2(〈Nx〉/N), we must have
(〈Nx〉/N ′)/(〈Nx〉/N ′′)≈ (N ′′/N ′)2 for two different sizes
N ′ and N ′′.
In fig. 2 we show the clustering analysis for the fluid

with Δ approaching −1 at T ∗ = 0.1 and ρ∗ = 0.45. We
see how letting Δ approach −1 stabilizes small neutrally
charged clusters and lowers the degree of dissociation
α= 〈N1〉/N . The first stable cluster is the dipole: the
“overlap” of a positive and a negative sphere. This are
dipoles of moment qr12 with r12 <σ(1+Δ+ δ) which

2Clearly a proper analysis of the cluster volume would itself
require a MC simulation [12].

Fig. 2: (Color online) We show the clustering properties of the
fluid at T ∗ = 0.1 and ρ∗ = 0.45 at various values of negative
nonadditivity approaching −1. Nn are the number of clusters
made of n particles. We chose δ= 0.1. In the MC simulations
we used N = 100 particles and a number of MCS= 5× 107.

may lack a gas-liquid criticality [41]. We clearly have a
transition from a conducting to an insulating phase as Δ
goes from 0 to −1. We expect that in the limiting case
of Δ=−1 the system we obtain is the neutral HS fluid of
half the density. This is confirmed by a comparison of
the like radial distribution functions with the one of the
neutral HS even if the Δ=−1 fluid simulation rapidly
slows down into the frozen configuration of the overlapping
anions and cations. In order to overcome this problem
one should alternate single-particle moves with neutrally
charged 2-cluster moves.
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In order to qualitatively reproduce the curve of fig. 2
we need to use eqs. (2), (3) with zintran =

∑n
s=0 z

intra
s,n−s

where zintras,t are the configurational intra-cluster partition
functions of a cluster made of s anions and t cations,

zintras,t =
1

s!t!

∫

Ωs,t

dr2 . . . drs+t
σ3(s+t−1)

×e−β
∑s+t
µ>ν=1 φiµjν (rµν) (4)

≈ (s+ t)
(s+t−1)

s!t!
(K/K0)

min{s,t}, (5)

K/K0 =

∫ λB/2

σ(1+∆)

r2e+λB/r dr
/

∫ λB/2

σ(1+∆)

r2 dr, (6)

where the configurational integral goes only over the
relative positions and it covers the region Ωs,t of s anions
clusters configuration space, λB = σ/T

∗ is the Bjerrum
length, Roman indices denote the particle species, Greek
indices denote the particle labels, a Roman index with
a Greek subindex denotes the species of the particle
corresponding to the Greek subindex, and rµν = rν − rµ
denotes the separation vector between particle μ and
particle ν. Equation (5) is justified as follows. Let us
call the anions i− = 1−, . . . , s− and the cations j+ =
1+, . . . , t+. From eq. (5) it follows that

zintrat,t =
1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i>j=1

e−2λB/ri+j+
t
∏

i,j=1

e+λB/ri+j−

≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i,j=1

e+λB/ri+j− , (7)

where we approximated e−λB/r ≈ 1 which is justified at
high T ∗ < 1/2(1+Δ) or low λB . Now we observe that
for example r1+2− = |r1+1− + r1−2− | with r1−2− >σ and
e+λB/r1+2− ≈ 1. So that for negative nonadditivity we can
further approximate

zintrat,t ≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i,j=1

e+λB/ri+j−

≈ 1

t!2
1

σ3(2t−1)

∫

Ωt,t

t
∏

l=2

dr1+l−

t
∏

k=1

drk+k−

×
t
∏

i=1

e+λB/ri+i−

∝∼ (2t)
(2t−1)

t!2
(K/K0)

t , (8)

where the factor (2t)(2t−1) takes into account the volume
of Ωt,t. Using the same chain of approximations we reach
eq. (5). We immediately see how zintra1,1 ∝K/σ3 becomes
bigger and bigger as Δ→−1 and the same holds for all
the zintrak,k which clearly dominate over all the others z

intra
s,t

with s �= t. And this qualitatively explains fig. 2.
Sufficiently close to the critical point we determined

the qualitative change in the behavior of the gas-liquid
coexistence region by switching on a negative or a positive
nonadditivity. To this aim we divided the simulation box
into m3 cubes of side ℓ=L/m and registered the density
inside each cell ρi =Ni/ℓ3, where Ni is the number of
particles inside the i-th cell so that

∑m3

i=1Ni =N . Then
we calculated the density distribution function Pm(ρ) =
∑m3

i=1 Pm(ρi)/m
3 [42,43], where Pm(ρi) is the distribution

function for the i-th cell. With
∫

Pm(ρ) dρ= 1. Above the
critical temperature the density probability distribution
function can be described by a Gaussian centered at the
simulation density, whereas below, it becomes bimodal
with two peaks one centered at the gas density and one at
the liquid density.
We start from an initial configuration of particles of

random species placed on a simple cubic lattice. We
equilibrate (melt) the fluid for 106 MCS/particle. We
then sampled the distribution function every 10 MCS.
To enhance the efficiency of the determination of the
cell density distribution, every 10 MCS, we choose the
subdivision of the simulation box into cells with a random
displacement r= (rx, ry, rz) with rx, ry, rz ∈ [0, L]. And
we measured the distribution function on runs of 106

MCS/particle.
Choosing m= 2 and N = 100 the results for the fluid at

a temperature T ∗ = 0.02, ρ∗ = 0.2, well within the coex-
istence region of the pure RPM fluid, and Δ= 0,±D
with D= 10−1, 10−2, 10−3 are shown in fig. 3. In this case
the minimum density that can be registered is 1/ℓ3 =
0.2× 8/100 = 0.016. We see that the pure RPM fluid shows
a density distribution function which has three peaks with
the first peak, which lies below the minimum density, at
approximately the low density of the gas phase, the second
peak at the simulations density ρ∗ = 0.2 which is due to
the fact that the fluid develops surfaces between the gas
and the liquid phase [44], and the third peak at approxi-
mately the high density of the liquid phase. We see from
the figure that increasing D the middle peak is lost first
in the positive additive model and then in the negative
nonadditive models. Moreover for the biggest D the peak
of the liquid phase is barely visible. This may be due to
the fact that one had to choose a proper simulation density
closer to the density of the liquid [42,43]. We clearly see
how this analysis works like a “microscope” on the degree
of nonadditivity predicting an increase(decrease) of the
coexistence region for small negative(positive) nonaddi-
tivity. This behavior can be explained as follows. Positive
nonadditivity increases the effective excluded-volume of
ions, thereby reducing the density of the liquid phase, and
negative nonadditivity does the opposite.

46003-p4
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Fig. 3: (Color online) Cell density distribution function for
the fluid at T ∗ = 0.02, ρ∗ = 0.2 and Δ= 0,±D with D=
10−3, 10−2, 10−1. We used N = 100 and m= 2 with 106

MCS/particle.

We believe that our results could be relevant for the
interpretation of experimental work on the phase diagrams
of room temperature ionic liquids [25]. In these experimen-
tal systems the liquid-liquid binodals shifted above and
below the one of the pure RPM are observed depending on
the kind of solvent. If on the one hand this can be ascribed
to the different dielectric constant of the solvent [24] on
the other hand it is clear that depending on the kind of
solvent used the anion-cation contact-pairing affinity may
vary [45] and thus the different experimental ionic liquids
considered should be more correctly described by compari-
son not just with the pure RPM but with the more realistic
primitive model with the addition of either a positive or
negative size nonadditivity.

In conclusion, we have performed for the first time a
MC simulations study of the vapor phase of the RPM
with nonadditive diameters, with particular emphasis on
its clustering properties. A density distribution func-
tion analysis shows how the gas-liquid coexistence region
evolves by switching on the nonadditivity. A negative
nonadditivity tends to enlarge the coexistence region while
a positive one to shrink it.
From the cluster analysis we where able to distinguish

between two kind of behaviors for the cluster concentra-
tions. When we are below the percolation threshold the
curves for the cluster concentrations as a function of the
cluster size are independent of the number of particles
used in the simulation and can be qualitatively explained
by a simple clustering theory where one approximates the
clusters to form an ideal gas and the n-cluster as formed
by n noninteracting particles, for not too small density or
nonadditivity. When we are above the percolation thresh-
old the curves depend on the number of particles used in
the simulation and obey a simple scaling relationship.
At low density, the negative nonadditive fluid has higher

clustering than the pure RPM whereas at high densities
the positive nonadditive fluid has a greater degree of
clustering. The positive nonadditive fluid is the first one
to reach the percolating clusters upon an increase of the
density. This is due to the less space available to the
ions, for a given density, for positive nonadditivity and
to the frustrated tendency to segregation of like particles
at high density. A negative nonadditivity tends to greatly
enhance the formation of the neutrally charged clusters,
starting with the dipole, as can be predicted from the
simple clustering theory refined at the intra-cluster level.
Traces of these features can also be read from an analysis
of the partial radial distribution function and structure
factors, which will be presented elsewhere.
In parallel with the density distribution function analy-

sis we are currently planning to perform a Gibbs ensemble
MC study of the gas-liquid binodal to establish more accu-
rately the dependence on the nonadditivity parameter.
We hope that the present study could foster additional

theoretical and computational studies as well as experi-
mental realizations of these simple but rich fluids.

∗ ∗ ∗
RF would like to acknowledge the use of the compu-

tational facilities of CINECA through the ISCRA call.
Both authors would like to thank the referee for useful
comments.
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[39] Santos A., López de Haro M. and Yuste S. B.,

J. Chem. Phys., 132 (2010) 204506.
[40] Tani A. and Henderson D., J. Chem. Phys. , 79 (1983)

2390.
[41] Rovigatti L., Russo E. and Sciortino F., Phys. Rev.

Lett., 107 (2011) 237801.
[42] Rovere M., Heermann D. W. and Binder K., Euro-

phys. Lett., 6 (1988) 585.
[43] Rovere M., Heermann D. W. and Binder K., J. Phys.:

Condens. Matter, 2 (1990) 7009.
[44] Smit B., de Smedt Ph. and Frenkel D., Mol. Phys.,

68 (1989) 931.
[45] Kalcher I., Schulz J. C. F. and Dzubiella J., Phys.

Rev. Lett., 104 (2010) 097802.

46003-p6


