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PACS 64.60.De – Statistical mechanics of model systems (Ising model, Potts model, field-theory
models, Monte Carlo techniques, etc.)

PACS 64.60.Ej – Studies/theory of phase transitions of specific substances
PACS 64.70.D- – Solid-liquid transitions

Abstract – We study a system formed by soft colloidal spheres attracting each other via a
square-well potential, using extensive Monte Carlo simulations of various nature. The softness is
implemented through a reduction of the infinite part of the repulsive potential to a finite one. For
sufficiently low values of the penetrability parameter we find the system to be Ruelle stable with
square-well–like behavior. For high values of the penetrability the system is thermodynamically
unstable and collapses into an isolated blob formed by a few clusters each containing many
overlapping particles. For intermediate values of the penetrability the system has a rich phase
diagram with a partial lack of thermodynamic consistency.
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Pair effective interactions in soft-condensed-matter
physics can be of various nature and one can often
find real systems whose interaction is bounded at small
separations as, for instance, in the case of star and chain
polymers [1]. In this case, paradigmatic models, such as
square-well (SW) fluids, that have been rather successful
in predicting thermo-physical properties of simple liquids,
are no longer useful. Instead, different minimal models
accounting for the boundness of the potential have to
be considered, the Gaussian core model [2] and the
penetrable-sphere (PS) model [3–5] being well-studied
examples. More recently, the penetrable-square-well
(PSW) fluid has been added to this category [6–9]
with the aim of including the existence of attractive
effective potentials. The PSW model is obtained from the
SW potential by reducing to a finite value the infinite
repulsion at short range,

φPSW(r) =











ǫr, r� σ,

−ǫa, σ < r� σ+Δ,

0, r > σ+Δ,

(1)

(a)E-mail: rfantoni@ts.infn.it

where ǫr and ǫa are two positive energies accounting
for the repulsive and attractive parts of the potential,
respectively, Δ is the width of the attractive square well,
and σ is the width of the repulsive barrier. For ǫr→∞
one recovers the SW model, while for Δ= 0 or ǫa = 0 one
recovers the PS model.
For finite ǫa, the ratio ǫa/ǫr is a measure of the

penetrability of the barrier and we shall refer to ǫa/ǫr
as the penetrability ratio. PSW pair potentials can be
obtained as effective potentials for instance in polymer
mixtures [10,11]. While in the majority of the cases the
well depth ǫa is much smaller than the repulsive barrier
ǫr (low penetrability limit) these mesoscopic objects are
highly sensitive to external conditions (e.g., quality of the
solvent) and may thus in principle exhibit higher values of
the penetrability ratio ǫa/ǫr.
It is well known that three-dimensional SW fluids

exhibit a fluid-fluid phase transition for any width of the
attractive square well [12–16], the liquid phase becoming
metastable against the formation of the solid for a suffi-
ciently narrow well [15]. It is also well established that
in the PS fluid (that lacking an attractive component in
the pair potential cannot have a fluid-fluid transition) an
increase of the density leads to the formation of clusters
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of overlapping particles arranged in an ordered crystalline
phase [3,17–19].
While the novel features appearing even in the one-

dimensional case have been studied in some details [6–9],
no analysis regarding the influence of penetrability and
attractiveness on the phase behavior of PSW fluids have
been reported, so far, in three dimensions. The present
paper aims to fill this vacancy.
A system is defined to be Ruelle stable when the total

potential energy UN for a system of N particles satis-
fies the condition UN �−NB, where B is a finite posi-
tive constant [20,21]. In ref. [8] we proved that in the
one-dimensional case the PSW model is Ruelle stable if
ǫa/ǫr < 1/2(ℓ+1), where ℓ is the integer part of Δ/σ.
This result can be extended to any dimensionality d by
the following arguments. The configuration which mini-
mizes the energy of N particles interacting via the PSW
potential is realized when M closed-packed clusters, each
consisting of s=N/M particles collapsed into one point,
are distributed such that the distance between centers of
two neighbor clusters is σ. In such a configuration, all
the particles of the same cluster interact repulsively, so
the repulsive contribution to the total potential energy is
ǫrMs(s− 1)/2. In addition, the particles of a given clus-
ter interact attractively with all the particles of those
f∆ clusters within a distance smaller than σ+Δ. In the
two-dimensional case, f∆ = 6 and 12 if Δ/σ <

√
3− 1 and√

3− 1<Δ/σ < 1, respectively. For d= 3, the case we are
interested in, one has f∆ = 12, 18, and 42 if Δ/σ <

√
2− 1,√

2− 1<Δ/σ <
√
3− 1, and

√
3− 1<Δ/σ < 1, respec-

tively. The attractive contribution to the total potential
energy is thus −ǫa(M/2)[f∆− b∆(M)]s

2, where b∆(M)
accounts for a reduction of the actual number of clus-
ters interacting attractively, due to boundary effects.
This quantity has the properties b∆(M)< f∆, b∆(1) =
f∆, and limM→∞b∆(M) = 0. For instance, in the two-
dimensional case with Δ/σ <

√
3− 1 one has b∆(M) =

2(4
√
M − 1)/M . Therefore, the total potential energy is

UN (M)

Nǫr
=−
1

2
+
N

2M
F (M), (2)

where F (M)≡ (ǫa/ǫr)b∆(M)+ (1− f∆ǫa/ǫr). If ǫa/ǫr <
1/f∆, F (M) is positive definite, so UN (M)/N has a lower
bound and the system is stable in the thermodynamic
limit. On the other hand, If ǫa/ǫr > 1/f∆, one has F (1) = 1
but limM→∞F (M) =−(f∆ǫa/ǫr − 1)< 0. In that case,
there must exist a certain finite value M =M0 such
that F (M)< 0 for M >M0. As a consequence, in those
configurations with M >M0, UN (M)/N has no lower
bound in the limit N →∞ and thus the system may be
unstable.
We have performed an extensive analysis of the vapor-

liquid phase transition of the system using Gibbs Ensem-
ble Monte Carlo (GEMC) simulations [22–26], starting
from the corresponding SW fluid condition and gradually
increasing the penetrability ratio ǫa/ǫr until the transi-
tion disappears. A total number of N = 512 particles with
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Fig. 1: (Colour on-line) Plot of the penetrability ratio ǫa/ǫr as
a function of Δ/σ. The displayed line separates the parameter
region where the PSW model admits a fluid-fluid phase
transition from that where it does not. The highlighted region
(ǫa/ǫr � 1/12 for Δ/σ <

√
2− 1, ǫa/ǫr � 1/18 for

√
2− 1<

Δ/σ <
√
3− 1, and ǫa/ǫr � 1/42 for

√
3− 1<Δ/σ < 1) shows

where the model is expected to be thermodynamically stable
in the sense of Ruelle for any thermodynamic state. The SW
model falls on the horizontal axis (ǫa/ǫr→ 0) and its fluid-fluid
transition is expected to be metastable against the freezing
transition for Δ/σ� 0.25 [15]. The circles are the points chosen
for the calculation of the coexistence lines (see figs. 2 and 5).
The crosses are the points chosen for the determination of
the boundary between extensive and non-extensive phases
(see fig. 3).

2N -particle random displacements, N/10 volume changes,
and N -particle swap moves between the gas and the liquid
box, on average per cycle, were considered. We find that
for any given width Δ/σ < 1 of the well, there is a limit
value of the penetrability ratio ǫa/ǫr above which no fluid-
fluid phase transition is observed. This is depicted in fig. 1
where it can be observed that (for Δ/σ < 1) this line lies
outside the Ruelle stable region ǫa/ǫr < 1/f∆.
It is instructive to analyze the detailed form of the

coexistence curves below (but close to) the limit line
of fig. 1. This is presented in fig. 2. We have explicitly
checked that our code reproduces completely the results
of Vega et al. [12] for the SW model. Following standard
procedures [12] we fitted the GEMC points near the
critical point using the law of rectilinear diameters (ρl+
ρg)/2 = ρc+A(Tc−T ), where ρl (ρg) is the density of the
liquid (gas) phase, ρc is the critical density, and Tc is
the critical temperature. Furthermore, the temperature
dependence of the density difference of the coexisting
phases is fitted to the scaling law ρl− ρg =B(Tc−T )

β

where β = 0.32 is the critical exponent for the three-
dimensional Ising model. The amplitudes A and B were
determined from the fit. In the state points above the limit
line of fig. 1 we have considered temperatures below the
critical temperature of the corresponding SW system. The
disappearance of the fluid-fluid transition is signaled by
the evolution towards an empty gas box and a clustered
phase in the liquid box.
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Fig. 2: (Colour on-line) Fluid-fluid coexistence line. The solid
circle represents the critical point (ρc, Tc). In the top panel,
for Δ/σ= 0.25 and ǫa/ǫr = 1/6, one has ρcσ

3 = 0.307 and
kBTc/ǫa = 0.762; in the middle panel, below the limit pene-
trability, for Δ/σ= 0.5 and ǫa/ǫr = 1/8, one has ρcσ

3 = 0.307
and kBTc/ǫa = 1.241; and in the bottom panel for Δ/σ= 1.0
and ǫa/ǫr = 1/11, one has ρcσ

3 = 0.292 and kBTc/ǫa = 2.803.
The lines are the result of the fit with the law of rectilinear
diameters. The SW results are the ones of Vega et al. [12].

As discussed, the PSW fluid is thermodynamically
Ruelle stable when ǫa/ǫr < 1/f∆ for all values of the ther-
modynamic parameters. For ǫa/ǫr > 1/f∆ the system is
either extensive or non-extensive depending on tempera-
ture and density. For a given density, one could then expect
that there exists a certain temperature Tinst(ρ), such
that the system is metastable if T > Tinst and unstable if
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Fig. 3: (Colour on-line) Regions of the phase diagram where the
PSW fluid, with Δ/σ= 0.5 and two different values of ǫa/ǫr, is
found to be extensive or non-extensive (here we used N = 512
particles). Representative snapshots in the two regions are
shown on the left-hand side. The instability line corresponding
to the higher penetrability case (dashed line) lies above the one
corresponding to lower penetrability (continuous line).

T < Tinst. We determined the metastable/unstable
crossover by performing NVT Monte Carlo simulations
with N = 512 particles initially uniformly distributed
within the simulation box. Figure 3 reports the results
in the reduced temperature-density plane for Δ/σ= 0.5
and for two selected penetrability ratios ǫa/ǫr = 1/7 and
1/4, the first one lying exactly just above the limit line of
fig. 1 while the second deep in the non-transition region.
We worked with constant size moves (instead of fixing the
acceptance ratios) during the simulation run, choosing
the move size of 0.15 in units of the the simulation box
side. A crucial point in the above numerical analysis is
the identification of the onset of the instability. Clearly
the physical origin of this instability stems from the fact
that the attractive contribution increases unbounded
compared to the repulsive one and particles tend to lump
up into clusters of multiply overlapping particles (“blob”).
Hence the energy can no longer scale linearly with the
total number of particles N and the thermodynamic limit
is not well defined (non-extensivity). We define a cluster
in the following way. Two particles belong to the same
cluster if there is a path connecting them, where we are
allowed to move on a path going from one particle to
another if the centers of the two particles are at a distance
less than σ.
The state points belonging to the unstable region are

characterized by a sudden drop of the internal energy
and of the acceptance ratios at some points in the system
evolution during the MC simulation. Representative snap-
shots show that a blob structure has nucleated around a
certain point and occupies only a part of the simulation
box with a few clusters. The number of clusters decreases
as one moves away from the boundary line found in fig. 3
towards lower temperatures. Upon increasing ǫa/ǫr the
number of clusters decreases and the number of particles
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Fig. 4: (Colour on-line) Radial distribution function for the
PSW model at Δ/σ= 0.5, kBT/ǫa = 1.20, and ρσ

3 = 0.7 for
two different values of the penetrability ratio ǫa/ǫr.

per cluster increases. We assume a state to be metastable
if the energy does not undergo the transition after 107N -
single-particle moves. The fluid-fluid transition above the
limit penetrability line of fig. 1 is not possible because the
non-extensive phase shows up before the critical point is
reached.
The boundary line of fig. 3 is robust with respect to

the size of the system, provided that a sufficiently large
size (N � 512) is chosen. When the number of particles in
the simulation goes below the number of clusters which
would form in the non-extensive phase the system seems
to remain extensive. For instance, with N = 1024 particles
we obtained under the ǫa/ǫr = 1/7, Δ/σ= 0.5 conditions
a threshold temperature kBT/ǫa ≈ 1.15 for ρσ

3 = 0.4 and
2.25 for ρσ3 = 0.8, which are close to the values obtained
with N = 512 particles.
There is an apparent hysteresis in forming and melt-

ing the non-extensive phase. For example when ǫa/ǫr =
1/7, Δ/σ= 0.5, and ρσ3 = 1.0 the non-extensive phase
starts forming when cooling down to kBT/ǫa = 2.75. Upon
increasing the temperature again, we observed a melting
transition at significantly higher temperatures (kBT/ǫa �
4). We also found the hysteresis to be size dependent; in
the same state for ρσ3 = 0.6 the melting temperatures are
kBT/ǫa ≈ 2.5 for N = 256, kBT/ǫa ≈ 4.5 for N = 512, and
kBT/ǫa ≈ 6.5 for N = 1024. This suggests that the exten-
sive phase in fig. 3 is actually metastable with respect
to the non-extensive phase in the thermodynamic limit.
However the metastable phase can be stabilized by taking
the size of the system finite. In addition we cannot exclude,
a priori, the possibility of a true extensive stable phase as
it is not prevented by the Ruelle criterion. We note that
the size dependence of the hysteresis in the melting could
be attributed to the fact that the blob occupies only part
of the simulation box and therefore a surface term has a
rather high impact on the melting temperature.
A convenient way to characterize the structure of the

fluid is to consider the radial distribution function g(r).
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Fig. 5: (Colour on-line) Isotherm kBT/ǫa = 1 for the PSW
system with Δ/σ= 0.5 and ǫa/ǫr = 1/8 and ǫa/ǫr = 1/15, as
obtained from NPTMC simulation withN = 108 particles. The
pressure axis is in logarithmic scale. Snapshots of the centers
of mass of the clusters in the solid are shown on the right-hand
side.

This is depicted in fig. 4 for the cases Δ/σ= 0.5, kBT/ǫa =
1.20, and ρσ3 = 0.7 at ǫa/ǫr = 1/8 and ǫa/ǫr = 1/7. The
latter case is in the non-extensive region, according to
fig. 3. We can clearly see that there is a dramatic change
in the structural properties of the PSW liquid. In the
non-extensive case, ǫa/ǫr = 1/7, the radial distribution
function grows a huge peak at r= 0 and decays to zero
after the first few peaks, which suggests clustering and
confinement of the system.
In order to study the solid phase of the PSW model

below the limit penetrability we employed isothermal-
isobaric (NPT) MC simulations. A typical run would
consist of 108 steps (particle moves or volume moves) with
an equilibration time of 107 steps. We used 108 particles
and adjusted the particle moves to have acceptance ratios
of ≈0.5 and volume changes to have acceptance ratios
of ≈0.1. Here we only consider the case of PSW with
Δ/σ= 0.5 and ǫa/ǫr = 1/8 and 1/15.
For the SW system with a width Δ/σ= 0.5 the critical

point is known to be at kBTc/ǫa = 1.23 and ρcσ
3 =

0.309, its triple point being at kBTt/ǫa = 0.508, Ptσ
3/ǫa =

0.00003, ρlσ
3 = 0.835, and ρsσ

3 = 1.28 [15]. No solid stable
phase was found in ref. [15] for temperatures above
the triple point, meaning that the melting curve in the
pressure-temperature phase diagram is almost vertical.
On the other hand, the phase diagram of the PSW
fluid with the same well width and a value of ǫa/ǫr =
1/8, just below the limit line of fig. 1, shows that the
melting curve has a smooth positive slope in the pressure-
temperature phase diagram. In order to establish this, we
used NPT simulations to follow the kBT/ǫa = 1 isotherm.
From fig. 5 we can clearly see the jumps in density
corresponding to the gas-liquid and to the liquid-solid
coexistence regions. The presence of a solid phase can
be checked by computing the Q6 order parameter [27],
calculated for the center of mass of individual clusters,
that in the present case turns out to be Q6 ≈ 0.35.
The crystal structure is triclinic with a unit cell with
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a= b= c= σ and α= β = π/3 and γ = cos−1(1/4). There
are possibly other solid-solid coexistence regions at higher
pressures. Moreover the relaxation time of the MC run in
the solid region is an order of magnitude higher than the
one in the liquid region.
We also run at the same temperature a set of simula-

tions for the PSW fluid with ǫa/ǫr = 1/15. The results (see
fig. 5) showed no indication of a stable solid, in agreement
with the fact that at this very low value of the penetrabil-
ity ratio the system is SW-like.
A peculiarity of the PSW in the region below the limit

penetrability of fig. 1, but not in the Ruelle stability
region, is a violation of the Clausius-Clapeyron equa-
tion [28] along the liquid-solid coexistence curve, which
represents a partial lack of thermodynamic consistency.
In the intermediate penetrability case (i.e., above

Ruelle’s threshold but below the limit penetrability),
the observed crystal structure is made of clusters of
overlapping particles (rarely more than two) located at
the sites of a regular crystal lattice. It is precisely this
additional degree of penetrability, not present in the SW
system, that allows for the coexistence of the liquid and
the solid at not excessively large pressures. In this respect
qualitative arguments along the lines suggested in ref. [19]
could be useful.
In conclusion, we have studied the phase diagram

of the three-dimensional PSW system. This model is
Ruelle stable for ǫa/ǫr < 1/f∆. For ǫa/ǫr > 1/f∆ is either
metastable or unstable (non-extensive), depending on the
values of temperature and density, as shown in fig. 3. The
instability is indicated by the collapse of the system in a
confined blob made up of a few clusters of several overlap-
ping particles. Moreover, the gas-liquid phase transition
disappears, as shown in fig. 1.
For the metastable fluid near the limit penetrability line

of fig. 1 we determined the phase diagram comparing it
with the corresponding SW case. We determined how the
gas-liquid coexistence curves are modified by the presence
of penetrability (see fig. 2) and discussed the main features
of the phase diagram, including the solid phase, for
Δ/σ= 0.5.
For the liquid-solid coexistence curves we generally

found that the solid density increases with respect to the
corresponding SW case, as expected, due to the formation
of clusters of overlapping particles in the crystal sites. For
Δ/σ= 0.5 the PSW model with a sufficient penetrability
to have a metastable system, but not a Ruelle stable
one, has a melting curve with a positive slope in the
pressure-temperature phase diagram with a violation of
the Clausius-Clapeyron thermodynamic equation, thus
confirming the metastable character of the phases. For
sufficient low penetrability the system is in the Ruelle
stable region, and behaves as the corresponding SW
model.
In summary, by experimentally tuning the repulsive

barrier relative to the well depth one could observe
a) stable phases resembling those of a normal fluid,

b) metastable phases with fluid-fluid and fluid-solid coexis-
tence, or c) the collapse of the system to a small region.
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