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Abstract We prove through Monte Carlo analysis that the
covariant Euclidean scalar field theory, ϕr

n , where r denotes
the power of the interaction term and n = s + 1 where s is
the spatial dimension and 1 adds imaginary time, such that
r = n = 4 can be acceptably quantized using scaled affine
quantization and the resulting theory is nontrivial and renor-
malizable even at low temperatures in the highly quantum
regime.

1 Introduction

The classical limit only imposes a constraint on the quan-
tum theory of a given system so there is no reason why the
classical limit should determine the quantum theory uniquely.
Accordingly, it is worthwhile to look for alternative quantiza-
tion recipes, such as affine quantization. We recently showed
[1–4] that a covariant Euclidean scalar field quantization,
henceforth denoted ϕr

n , where r is the power of the interac-
tion term and n = s + 1, where s is the spatial dimension
and 1 adds imaginary time, such that r = 2n/(n − 2), e.g.,
r = n = 4, can be acceptably quantized using scaled affine
quantization (AQ) [5,6] and the resulting theory is nontrivial,
unlike what happens using the usual canonical quantization
(CQ) [7–10].1 In such studies the temperature was kept con-
stant throughout the whole analysis. It is therefore important

1 In a CQ covariant model the interaction term g
∫

φ(x)r dnx has a
power r/n per integration. This should be compared with the kinetic
term

∫ [∇φ(x)]2 dnx which has a power 2/(n−2) per integration. Now,
since we work in a finite volume region, if r/n > 2/(n − 2) then the
domain where the CQ action is finite Dg>0 ⊂ Dg=0 and the domains
change because of reducing g back to zero will only retain the smallest
version of the domain by continuity, and that will not be the theory
you started out with so that the CQ model is trivial. Models for which
r > 2n/(n − 2) have been also recently correctly quantized, as for
example ϕ12

3 [11,12].
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to study the behavior of the system as we allow temperature
to become lower and lower thereby approaching the extreme
quantum regime.

The present study will show, through a path integral Monte
Carlo (MC) analysis, that as the temperature is lowered the
renormalized mass is almost unaffected but the renormal-
ized coupling constant diminishes. Nonetheless at any given
temperature, even in the low temperature, strongly quantum,
regime, the scaled AQ model appears to be renormalizable
showing a non-free behavior in the continuum limit. This
success of scaled AQ suggests that for the ϕ4

4 field theory the
more common CQ should be replaced by the less known AQ.

2 Affine quantization field theory

For a single scalar field, with spacial degrees of freedom x =
(x1, x2, . . . , xs), ϕ(x) with canonical momentum π(x), the
classical affine variables are κ(x) ≡ π(x) ϕ(x) and ϕ(x) �=
0. The reason we insist that ϕ(x) �= 0 is because if ϕ(x) = 0
then κ(x) = 0 and π(x) can not help.

We next introduce the classical Hamiltonian expressed in
affine variables. This leads us to

H(κ, ϕ) =
∫

{ 1
2 [κ(x)2 ϕ(x)−2

+(∇ϕ(x))2 + m2 ϕ(x)2] + g ϕ(x)r } dsx, (1)

where r is a positive, even, integer and g ≥ 0 is the bare
coupling constant such that for g → 0 we fall into the free
field theory. With these variables we do not let ϕ(x) = ∞
otherwise ϕ(x)−2 = 0 which is not fair to κ(x) and, as we
already observed, we must forbid also ϕ(x) = 0 which would
admit ϕ(x)−2 = ∞ giving again an undetermined kinetic
term. Therefore the AQ bounds 0 < |ϕ(x)| < ∞ forbid any
nonrenormalizability which is otherwise possible for CQ [7–
10].
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The quantum affine operators are the scalar field ϕ̂(x) =
ϕ(x) and the dilation operator κ̂(x) = [ϕ̂(x)π̂(x) +
π̂(x)ϕ̂(x)]/2 where the momentum operator is π̂(x) =
−i h̄δ/δϕ(x). Accordingly for the self adjoint kinetic term
κ̂(x)ϕ̂(x)−2κ̂(x) = π̂(x)2 + (3/4)h̄δ(0)2sϕ(x)−2 and one
finds for the quantum Hamiltonian operator

Ĥ(κ̂, ϕ̂) =
∫ {

1
2 [π̂(x)2 + (∇ϕ(x))2 + m2 ϕ(x)2]

+g ϕ(x)r + 3
8 h̄

2 δ(0)2s

ϕ(x)2

}

dsx . (2)

The affine action is found adding time, x0 = ct , where
c is the speed of light constant and t is imaginary time, so
that S = ∫ β

0 H dx0, with H the semi-classical Hamiltonian
corresponding to the one of Eq. (2), will then read

S[ϕ] =
∫ β

0
dx0

∫

Ls
ds x

⎧
⎨

⎩
1

2

⎡

⎣
s∑

μ=0

(
∂ϕ(x)

∂xμ

)2

+m2 ϕ(x)2

⎤

⎦ + g ϕ(x)r + 3

8
h̄

δ(0)2s

ϕ(x)2

⎫
⎬

⎭
, (3)

where with an abuse of notation we here use x for (x0, x1, x2,

. . . , xs) and β = 1/kBT , with kB the Boltzmann’s constant,
is the inverse temperature. At low temperatures the quantum
effects become more relevant and this is the regime we are
interested in this work.

The vacuum expectation value of an observable O[ϕ] will
then be given by the following expression

〈O〉 =
∫ O[ϕ] exp(−S[ϕ]) Dϕ(x)

∫
exp(−S[ϕ]) Dϕ(x)

, (4)

where the functional integrals will be calculated on a lattice
using the path integral Monte Carlo method as explained
further on.

3 Lattice formulation of the field theory

The theory considers a real scalar field ϕ taking the value
ϕ(x) on each site of a periodic n-dimensional lattice, with
n = s + 1 space-time dimensions, of lattice spacing a, the
ultraviolet cutoff, and spacial periodicity L = Na and tem-
poral periodicity β = N0a. The field path is a closed loop
on an n-dimensional surface of an (n + 1)-dimensional β-
cylinder. We used a lattice formulation of the AQ field theory
of Eq. (3) (also studied in Eq. (8) of [1]) using the scaling
ϕ → a−s/2ϕ and g → as(r−2)/2g which is necessary2 to

2 Note that from a physical point of view one never has to worry about
the mathematical divergence since the lattice spacing will necessarily
have a lower bound. For example at an atomic level one will have a �
1Å. In other words the continuum limit will never be a mathematical
one.

eliminate the Dirac delta factor δ(0) = a−1 divergent in the
continuum limit a → 0. The affine action for the field (in the
primitive approximation [13]) has then the following valid
discretization

S[ϕ]/a = 1
2

{
∑

x,μ

a−2[ϕ(x) − ϕ(x + eμ)]2+m2
∑

x

ϕ(x)2

}

+
∑

x

g ϕ(x)r + 3

8

∑

x

h̄2

ϕ(x)2 ,

(5)

where eμ is a vector of length a in the +μ direction with
μ = 0, 1, 2, . . . , s. We will have S ≈ S.

In this work we are interested in reaching the continuum
limit by taking Na fixed and letting N → ∞ at fixed volume
Ls . The absolute temperature T = 1/kBβ is allowed to vary
so that the number of discretization points for the imaginary
time interval [0, β] will be N0 = β/a. We are here interested
in the N0 � N (or β � L) regime.

3.1 Monte Carlo results

We performed a path integral MC [13–16] calculation for the
AQ field theory described by the action of Eq. (5). We cal-
culated the renormalized coupling constant gR and mass mR

defined in Eqs. (11) and (13) of [1] respectively, measuring
them in the path integral MC through vacuum expectation
values like in Eq. (4). In particular

m2
R = p2

0〈|ϕ̃(p0)|2〉
〈ϕ̃(0)2〉 − 〈|ϕ̃(p0)|2〉 , (6)

and at zero momentum

gR = 3〈ϕ̃(0)2〉2 − 〈ϕ̃(0)4〉
〈ϕ̃(0)2〉2 , (7)

where ϕ̃(p) = ∫
dnx eip·xϕ(x) is the Fourier transform of

the field and we choose the 4-momentum p0 with one spacial
component equal to 2π/Na and all other components equal
to zero.

In our previous studies [1,4] we set L = β = 1. Here we
will consider L = 1 and β � L instead. As usual we will
impose periodic boundary conditions both in space and in
imaginary time. We will use natural units c = h̄ = kB = 1
throughout the whole analysis.

Following Freedman et al. [7], we fix (within 10%) the
renormalized mass mR ≈ 3, tuning appropriately the bare
mass m by trial and error, and we measure the renormalized
coupling constant gR at various values of the bare coupling g.
We found that the renormalized mass is almost independent
on β. So we chose the same values of m for all the tem-
peratures studied. But the renormalized coupling gR dimin-
ishes as β and/or m increase. It is then convenient to define a
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Fig. 1 The left panel is for AQ with L = 1 and T = 1, The cen-
tral panel is for AQ with L = 1 and T = 0.5, and the right panel is
for AQ with L = 1 and T = 0.2. We show the renormalized cou-
pling constant GR , defined in the text, as a function of g/(50 + g) for
decreasing values of the lattice spacing a. The renormalized mass was
kept fixed to mR ≈ 3 (within 10%) in all cases. The statistical errors

in the Monte Carlo were in all cases smaller than the symbols used.
The main source of uncertainty is nonetheless the indirect one stem-
ming from the unavoidable difficulty of keeping the renormalized mass
constant throughout all cases. The lines connecting the points are just
a guide for the eye

second renormalized coupling constant which is less depen-
dent on β, L , and m. Following Freedman et al. [7] we set
GR = gRmn

RL
sβ.

We chose two low temperatures (the case T = 1 had
already been studied in Ref. [4]), namely an intermediate
one T = 0.5 and an extreme one T = 0.2. In each case we
study the continuum limit by choosing decreasing values of
a, namelya = 1/4, 1/6, 1/10, 1/12 and 1/15 corresponding
respectively to N0 = 1/Ta = 8, 12, 20, 24, 30 for T = 0.5
and to N0 = 20, 30, 50, 60, 75 for T = 0.2. In each run we
used 3 × 107 MC steps, where one step consists in NsN0

Metropolis [14] configuration moves of each field compo-
nent, reaching equilibrium after 10% of the largest a run to
50% of the smallest a run. In our simulations we used block
averages and estimated the statistical errors using the jakknife
method (described in Section 3.6 of [17]) to take into account
of the correlation time. It took roughly 25 days of computer
time for the T = 0.2, a = 1/12 run to complete. In Fig. 1
we show the numerical results.

From the figure we can see how at all temperatures and all
bare coupling constants GR tends to stay far from zero as we
approach the continuum limit a → 0. Moreover, with respect
to the case T = 1, already studied in Ref. [4], where the value
for GR tends to revert its trend to decrease for a decrease of
the lattice spacing only for an ultraviolet cutoff as small as
a = 1/15, now we find that at T = 0.5 this inversion happens
already for a = 1/10 at least at intermediate bare coupling
and at T = 0.2 already for a = 1/6. This had to be expected
on general grounds because it is impossible to distinguish
time from the other spacial components just by looking at
the action expression (5) and the T = 1, a = 1/15 case has
a total of 154 = 50625 lattice points which is very close to

the total lattice points of the case T = 0.2, a = 1/10 which
are 10350 = 50000. We are just choosing an hyperrectangle
instead of an hypercube periodic lattice. Nonetheless there is
a strong indication that our scaled AQ model is indeed non-
free in the continuum thus resulting renormalizable, unlike
the corresponding CQ model.3 And the more so at lower
temperatures. We can therefore infer that the same should
continue to hold also in the T → 0, ground state, limit.

4 Conclusions

In conclusion we studied the renormalizability property of
one real scalar covariant Euclidean field quantized through
scaled affine quantization (AQ) with the path integral Monte
Carlo method on a lattice permeating the whole spacetime.
We therefore used periodic spacial boundary conditions at
finite unit volume to simulate an infinite volume system and
in measuring the renormalized mass and coupling constant
of the model we also enforced periodic temporal boundary
conditions which are necessary in order to determine the
required vacuum expectation values. The periodicity on the
imaginary time, i.e. the inverse temperature β = 1/T , was
chosen at increasing values equal to 1, 2, 5. Keeping fixed
the renormalized mass, our numerical results for the renor-

3 For a comparison with the corresponding scaled CQ results see
Ref. [18] and for the unscaled CQ ones see Ref. [1].
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malized coupling constant showed how this has a non mono-
tonically decreasing behavior with respect to a decreasing
lattice spacing. This remains true even at low temperature
thus proving the renormalizability of the model even when
the temperature is lowered in the extreme quantum regime.
We therefore suspect that the non triviality still holds for the
ground state.

On general grounds we should accept affine quantization
as a way to remove infinities, which are mathematical but
not physical, from the field theory. In fact just by looking at
the kinetic term in Eq. (1) we can say that if ϕ is allowed to
become infinity (or zero) then κ cannot help. If κ becomes
infinite then ϕ cannot help. κ = 0 is allowed so that π = 0.
When π and ϕ were alone, as in the canonical quantization
picture, they could allow mathematical infinities. In a phys-
ical (or Monte Carlo) measure of an observable there is no
space for mathematical infinities.

For the Higgs sector of the Standard Model, the low energy
properties are very specific and, so far, observation confirms
that they are well described by canonical ϕ4. It is certainly
true that canonical quantization (CQ) of ϕ4 does not reach
down to distances of the order of the Planck length – in that
realm, anyway, gravity cannot be dealt with classically – so
affine quantization (AQ) may be used to solve this problem.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: No data will be
deposited because it can be extracted directly from our Figures.]
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