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Abstract. We perform Monte Carlo simulation of the thermodynamic and structural properties of hard-,
square-well, and square-shoulder disks in narrow channels. For the thermodynamics, we study the inter-
nal energy per particle and the longitudinal and transverse compressibility factor. For the structure, we
study the transverse density and density of pairs profiles, the radial distribution function and longitudinal
distribution function, and the (static) longitudinal structure factor. We compare our results with a recent
exact semi-analytic solution found by Montero and Santos for the single file formation and first nearest
neighbor fluid, and explore how their solution performs when these conditions are not fulfilled making it
just an approximation.

1 Introduction

Confined fluids are an important field of study due to
the wide range of applications and situations where
they can be found [1]. Interesting systems in physics,
chemistry, or biology involve dealing with confined par-
ticles. Examples are carbon nanotubes [2,3] or biologi-
cal ion channels [4]. In many of these systems, the geom-
etry is so restrictive that one or more spatial dimensions
become negligible. One can, therefore, often describe
these systems as living in a one (1D) or two (2D) dimen-
sional space to simplify the mathematical model and
its subsequent study. Yet, in some cases, it is neces-
sary a more realistic description which can be obtained
by modeling the geometrical restriction without recur-
ring to a dimensionality reduction. So, for particles liv-
ing in three dimensions, we will talk about quasi two-
dimensional (quasi 2D) or quasi one-dimensional (quasi
1D) fluids. In this work, we will study particles living
in 2D which are quasi 1D.

Despite its clear importance, systems whose struc-
tural properties are amenable to exact analytic solu-
tions are very scarce, and usually limited to 1D flu-
ids [5–14] with only nearest neighbor interactions [15–
17]. Even if for restricted values of the thermodynamic
parameters, even 2D fluids may offer an exact ana-
lytic classical equilibrium statistical mechanics solution
[18–21]. Otherwise, one must resort to approximations,
numerical methods, or simulations.

Recently, Montero and Santos [22,23] developed an
exact semi-analytic formalism able to solve the longi-
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tudinal structure and thermodynamics of a quasi 1D
problem of single file formation and first nearest neigh-
bor fluids of hard-core particles in narrow channels.

In particular, the single file confinement constraint
[24,25] implies that particles are inside a pore that is
not wide enough to allow particles to bypass each other,
therefore confining them into a single file formation.

Whereas, the first nearest neighbor constraint implies
that the particles are not allowed to interact with their
second (or beyond) nearest neighbors [14].

The pore is a 2D narrow channel or band with peri-
odic boundary conditions along the longitudinal direc-
tion and open boundary conditions along the transverse
direction where the particles are assumed to be confined
by hard walls.

The nearest neighbor constraint allows the use of
the exact solution that is available for 1D fluids sub-
ject to such constraint [15–17]. In fact, Montero and
Santos study their quasi 1D fluids of particles inter-
acting through a pairwise potential ϕ2D(r) with a
mapping to a 1D non-additive mixture [26] of equal
chemical potentials species, where the species index
i denotes those particles with the ordinate equal to
a fixed value within the channel and the interaction
potential becomes ϕij(x) = ϕ2D(

√
x2 + (yi − yj)2).

They further assume the mixture to be polydisperse
[27–29], so that the molar fraction xi of the ith species
can be rewritten as F (y)dy which represents the frac-
tion of particles with the ordinate lying in the interval
[y, y + dy]. What they find [30] is that working in the
isothermal isobaric ensemble, the average of a function
of y can be expressed as 〈f(y)〉 =

∫
dy F (y)f(y), where

F (y) = φ2(y). Here φ(y) is the eigenfunction of the
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maximum eigenvalue of a certain operator K(y1, y2) =
exp{−βPLσ(y1, y2) − 1

2β[Φext(y1) + Φext(y2)]}, where
β = 1/kBT with kB Boltzmann constant and T the
absolute temperature, PL is the longitudinal pressure,
σ(y1, y2) is the distance of closest approach of particles
1 and 2, which are nearest neighbors, and Φext(y) is the
external potential which acts only in the dimension of
the y coordinates and confines the particles within the
channel.

In this work, we will perform Monte Carlo (MC)
simulations [31,32], in the canonical ensemble (for
results using molecular dynamics see Ref. [33]), to study
the thermodynamic and structural properties of Hard
(HD), Square-Well (SW), and Square-Shoulder (SS)
disks in narrow channels. For the thermodynamics, we
will study the internal energy and the compressibil-
ity factor. For the structure, we will study the Trans-
verse Density Profile (TDP), the Transverse Density of
Pairs Profile (TDPP), the Radial Distribution Function
(RDF) and Longitudinal Distribution Function (LDF),
and the (static) Longitudinal Structure Factor (LSF).

Of course with our MC simulations, we are not bound
to fulfill the single file and nearest neighbor constraints.
We will, therefore, also study the performance of the
solution of Montero and Santos outside the nearest
neighbor regime where it is expected to be just an
approximation.

The work is organized as follows: In Sect. 2, we will
describe the mathematical model of the physical fluid of
interest, the MC estimators for the quantities we want
to measure in our computer experiments, and some MC
results for the thermodynamics. In Sect. 3, we present
our MC results for the structure. Section 4 is for con-
cluding remarks.

2 Model and simulation details

Consider a 2D system of N particles interacting via a
pairwise potential ϕ2D(r). The particles are confined in
a very long channel of width w = 1+ ε and length L �
w, in such a way that they are in single file formation
and only first nearest neighbor interactions take place.
The channel surface density of the fluid will be σ =
N/Lw = λ/w with λ the longitudinal density. The total
potential energy of the fluid will be

Φ(Q) =
1
2

∑

i,i �=j

ϕ2D(qij) + Φext, (2.1)

where Q = (q1,q2, . . . ,qN ) are the positions of the
particles in the channel and q = (x, y) with x ∈
[−L/2, L/2] and y ∈ [−ε/2, ε/2]. We have periodic
boundary conditions (PBC) along x so that xi →
xi −nint(xi/L)L where ‘nint’ is the nearest integer and
enforce the usual minimum image convention so that
xi −xj → xi −xj −nint[(xi −xj)/L]L. Along y, instead,
we have open boundary conditions (OPC) where in par-
ticular we assume to have an infinitely repulsive exter-

nal potential Φext for y > ε/2 and y < −ε/2 and
we do not employ the minimum image convention. We
will denote with qij =

√
(xi − xj)2 + (yi − yj)2 the dis-

tance between particles at qi and at qj .
For Hard Disks (HD), we have

ϕ2D(r) =
{∞ if r < 1

0 else . (2.2)

If the transverse separation between two disks at con-
tact is s, their longitudinal separation is

a(s) =
√

1 − s2. (2.3)

The single file constraint in this case requires clearly
ε < εsf = 1. In this case, we have a close packing limit
longitudinal density given by λcp = 1/a(ε). To enforce
also the first nearest neighbor constraint we require
ε < εnn−HD =

√
3/2. For ε =

√
3/2, the close packing

longitudinal density is λcp = 2 and the surface density
is σcp = 2/(1 +

√
3/2) = 1.071 . . ..

For Square-Wells (SW) or Square-Shoulders (SS), we
have

ϕ2D(r) =

{∞ if r < 1
−ϕ0 if 1 < r < r0

0 else
, (2.4)

with ϕ0 > 0 for SW and ϕ0 < 0 for SS.
In this case, to enforce the first nearest neighbor

constraint, we require ε < εnn =
√

1 − (r0/2)2. Since
r0 > 1, we will have εnn < εnn−HD.

In our computer experiment, we measured various
thermodynamic and structural properties of these flu-
ids. We could than compare our numerical meta data
with analytic or semi-analytic theoretical data available
in the literature. To measure an observable O, we need
to calculate [34] the following quantity

〈O〉 =
∫

O(Q) exp[−βΦ(Q)] dQ∫
exp[−βΦ(Q)] dQ

, (2.5)

where β = 1/kBT with kB Boltzmann constant and T
absolute temperature. In our canonical (at fixed num-
ber of particles, surface area, and temperature) Monte
Carlo (MC) simulation, we employed the usual M(RT)2
algorithm [34] to sample the probability distribution
∝ exp[−βΦ(Q)].

We generally found it sufficient to use N = 100 with
runs up to 109 MC single particle moves long. The spa-
tial extent of the uniform particle displacement move
was tuned so to have acceptance ratios around 1/2 and
kept constant during the run, even if this was not always
possible at high densities.
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2.1 Structure

For the Radial Distribution Function (RDF) [35,36],
g(r) = 〈O〉, we have the following histogram estimator

O(Q; r) =
∑

i,i �=j

1[r−Δ/2,r+Δ/2[ (qij)
Nnid(r)

, (2.6)

where Δ is the histogram bin, 1[a,b[(t) = 1 if t ∈ [a, b[
and 0 otherwise, and nid(r) is the average number of
particles on the interception of the circular crown [r −
Δ/2, r+Δ/2[ with the part of the channel accessible to
the particles centers, for the uniform gas at the same
longitudinal density λ, which for a narrow channel can
be approximated to

nid = 2λΔ , (2.7)

independent of r. We have that g(r) gives the probabil-
ity density that sitting on a particle at q one has to find
another particle at q′, where r =

√
(x − x′)2 + (y − y′)2.

Instead of counting how many disks are separated a
2D distance r we can count how many are separated a
1D longitudinal distance |x|. So, doing the same calcu-
lation described above, but, in the end, keeping track
only of the relative abscissas, r =

√
(x − x′)2 = |x−x′|,

of the particles, we find the quasi 1D or Longitudinal
Distribution Function (LDF) g(|x|).

The Fourier transform of the radial distribution func-
tion is the (static) structure factor S(k) which for an
isotropic system is given by

S(k) = 1 +
λ

ε

∫
[g(r) − 1] exp(−ik · r) dr

+
λ

ε
(2π)2δ(k), (2.8)

where usually the Dirac delta function is neglected.
Note also that from the definition (2.6) we find the fol-
lowing sum rule

λ

ε

∫
[g(r) − 1] dr = −1, (2.9)

and from the definition (2.8) follows limk→0 S(k) = 0.
Moreover if limr→0 g(r) = 0 then limk→∞ S(k) = 1.
Now for our quasi 1D geometry of the narrow chan-
nel, the isotropy is clearly lost and when we count just
the longitudinal distances between the particles, for the
LDF g(|x|), we may still find limkx→0 S(kx) 
= 0 since
the sum rule becomes λ

ε

∫
[g(|x|)−1] dx = − 1

ε < −1. In
the following, we will always refer to this Longitudinal
Structure Factor (LSF) S(kx) and for brevity, we will
simply rewrite kx → k.

Another structural property to study is the Trans-
verse Density Profile (TDP) F (y) such that F (y)dy
gives the fraction of particles with the ordinate in the
interval [y, y + dy]. By symmetry, we clearly must have
for F an even function. A related function is F2(y),

the fraction of pairs of different particles 1 and 2 such
that their transverse distance |y2 − y1| ∈ [y, y + dy].
We will call this the Transverse Density of Pairs Profile
(TDPP).

2.2 Internal energy

For the internal energy per particle of the fluid [35,36],
we have u = 〈O〉 with the following internal energy per
particle estimator

O(Q) = Φ(Q)/N. (2.10)

For SW/SS with |βϕ0| = 1, we found the results of
Table 1.

2.3 Compressibility factor

For the compressibility factor Z = βP/(λ/ε) of the con-
fined 2D fluid, we have, from the virial theorem [37]

Z = 1 − β
λ

ε

1
4

∫∫

x1,x2∈[−L/2,L/2]
y1,y2∈[−ε/2,ε/2]

rϕ′
2D(r)g(r) dr

≈ 1 +
λ

2

∫ ∞

0

d exp[−βϕ2D(r)]
dr

ry(r) dr

= 1 +
λ

2
[g(1+) + (1 − eβϕ0)r0g(r+

0 )], (2.11)

where in the first line dr = d(x1 − x2)d(y1 − y2),
g(r) = g(|x1−x2|; y1, y2), and we used polar coordinates
so that dr = rdθdr. In the second line, we approxi-
mated

∫
channel

rdθ ≈ 2ε for the narrow channel, we then
introduced the continuous indirect correlation function
y(r) = g(r) exp[−βϕ2D(r)], where g(r) is the 2D RDF
of Eq. (2.6), and used the fact that for the SW/SS pair
potential of Eq. (2.4), we have

d exp[−βϕ2D(r)]
dr

= eβϕ0δ(r − 1)

+(1 − eβϕ0)δ(r − r0). (2.12)

The total thermodynamic pressure P = (PL +PT)/2,
where PL and PT are the longitudinal and transverse
2D pressures, respectively. In Table 1, we present some
results for SW/SS.

Let us now specialize to the HD case so that ϕ0 = 0.
We will also introduce p = PLε. From the Table I of
Ref. [22], we find that Zexact

L = βp/λ = 12.774 when
ε = 0.4 and βp = 12. From these data, we extract
λ = βp/Zexact

L = 0.671w and, at this longitudinal den-
sity, our canonical simulation gives βP = 15.85(2) for
Δ = 10−2 and βP = 16.53(1) for Δ = 10−3. Since the
exact longitudinal pressure is βP exact

L = βp/ε = 30, we
estimate a transverse pressure of βPT ≈ 2(16.53)−30 =
3.06. For the case when ε = 0.8 and βp = 12, we find
βP = 14.46(1) (these measures tend to slightly increase
even further at lower Δ). See Table 2 for these Z mea-
surement. Exact results from the Montero and Santos
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Table 1 Internal energy per particle (2.10) and total pressure (2.11) for N = 100 SW/SS with |βϕ0| = 1. The results were
determined from runs made of 5 × 107 single particle moves

ε r0 λcp λ σ u βP

SW SS SW SS

4/5 6/5 1.66667 1.080 0.6 −0.9303(4) +0.7673(7) 7.351(1) 9.965(3)
4/5 6/5 1.66667 1.260 0.7 −0.9797(4) +0.9176(8) 14.653(4) 16.45(1)√

7/4 3/2 1.33333 0.997 0.6 −0.99837(2) +0.9895(2) 9.865(2) 10.160(2)√
7/4 3/2 1.33333 1.163 0.7 −0.9999989(6) +0.99998(1) 23.856(7) 23.12(2)

Table 2 Results for N = 100 HD from Eqs. (2.11) and (2.13a) and comparison with the exact values of Table I of Ref.
[22]. ZMon

L are the MC values of Ref. [31]. The two low-density cases were determined from runs made of 5 × 107 single
particle moves, Δ = 10−5 for ZL, and Δ = 10−3 for Z

ε p Zexact
L ZMon

L λ λ/ε λcp 2 + a(ε)p Z ZL Zexact
L /ZL λ(I0 − Iasy

0 ) λ2(I1 − Iasy
1 )

0.4 12 12.774 12.774 0.939408 2.34852 1.09109 12.998 7.04(1) 12.8094(3) 0.997 2.1 2.3
0.4 120 112.04 112.03 1.07105 2.67762 1.09109 111.98 – ? ? +3.6 × 10−4 +3.5 × 10−4

0.8 12 9.6547 9.6548 1.24292 1.55365 1.66667 9.2000 9.31(1) 9.780(4) 0.987 −2.4 × 10−2 −2.5 × 10−2

0.8 120 74.017 74.016 1.62125 2.02656 1.66667 74.000 – ? ? < 10−15 −4.9 × 10−6

analysis [38] give βP = 16.722 for ε = 0.4, βp = 12 and
βP = 14.8551 for ε = 0.8, βp = 12. Alternatively, one
can use the canonical ensemble exact expression found
by Pergamenshchik [39].

Alternatively, one can use the quasi 1D scenario and
the LDF g(|x|) to find the longitudinal compressibility
factor ZL = βPL/(λ/ε). To do this, we need to calculate
(see Appendix A [40])

ZL =
1 − λI0

1 − λ + λ2(I0 − I1)
, (2.13a)

In =
∫ 1

a(ε)

xng(x) dx. (2.13b)

We computed the integrals In for n = 0, 1 numeri-
cally with a discretization Δ on the abscissa xi = Δi
with i = 0, 1, 2, 3, . . .. In Table 2, we show our results
compared with the ones of Ref. [22]. Note that for the
two high-density cases, this way of estimating numeri-
cally ZL is not useful since for λ → λcp we find

λI0 → 1 − 8 exp{−βp[1 − a(ε)]} = λIasy
0 ,

λ2I1 → 1 − 1
2
{1 + [2 − a(ε)]λ}(1 − λIasy

0 )(2.14a)

= λ2Iasy
1 , (2.14b)

and both numerator and denominator in Eq. (2.13a)
vanish. In this case, one can use the analytic expression
(see Appendix C of Ref. [22])

ZL → 2 + a(ε)p =
2

1 − λ/λcp
, (2.15)

valid asymptotically for λ near to its close packing limit
λcp.

1

5

25

0.0 0.5 1.0 1.5

Z L

λ

ε=0.1
ε=0.4
ε=0.6
ε=0.8

Fig. 1 Comparison between our MC (points) and the
exact results (lines) of Ref. [22] for the longitudinal com-
pressibility factor. The statistical error in the MC points is
smaller than the point symbol. The MC simulations were
up to 109 single particle moves long

Additional points are presented in Fig. 1, where we
compare with the exact results of Ref. [22] (results
shared privately and not all previously published). We
found that at the same value of λ, it takes longer to
equilibrate the large ε cases. For example, the MC
points at ε = 0.1 required just 107 single particle moves;
whereas, the ones at ε = 0.8 required up to 109 moves
(Figs. 2, 3).

Note that a drawback of this way of estimating the
longitudinal pressure is that it is hard to tell if the sta-
tistical error is more or less important than the system-
atic error due to the choice of the discretization Δ. In
this respect, instead of working in the canonical NλT
ensemble, it would be desirable to work in the isother-
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Fig. 2 Snapshot of the simulation box for N = 100 HD of radius r0 = 1 with ε =
√

3/2 and λ = 1

Fig. 3 Snapshot of the simulation box for N = 100 SW with βϕ0 = 1 and radius r0 = 6/5 with ε = 4/5 and σ = 7/10

2.0

2.5

3.0

3.5

0.00 0.05 0.10 0.15 0.20

F(
y)

y

ε=0.4, σ=0.671, N=100
exact

Fig. 4 TDP for N = 100 HD with ε = 0.4 and λ = 0.671w.
The exact result, shared privately by A. Montero and not
published before, fits our MC results very well. In particular
from Fig. 4 of Ref. [22], we see how the particles tend to
escape from the center of the channel preferring to stay in
contact with the walls as density approaches the packing
density

mal isobaric NpT ensemble with a volume change move
where one only varies the length of the channel L.

For the HD case, with ε = 0.4 and λ = 0.671w, we
find the TDP F (y) shown in Fig. 4. As you can see
the exact result of Ref. [22] fits our MC data very well.
For the same case the TDPP, F2(y), is shown in Fig. 5.
From this figure, we can see how the TDPP changes
drastically only getting really near to the close packing
density λcp = 1.091.

3 Results for the structure

In this section, we present our MC results for the struc-
tural properties of the confined quasi 1D fluids of our
interest.

3.1 Ideal gas (id)

We first tried to switch off the pair potential between
the particles taking ϕ2D(r) = 0 but keeping the confin-
ing infinitely repulsive external potential Φext switched
on. For the case λ = σw = 1 and ε =

√
3/2 we found the

results for the LDF and RDF shown in Figs. 6 and 7,
respectively. As you can clearly see from the MC results,

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

0.0 0.1 0.2 0.3 0.4

F 2
(y

)

y

σ=0.671
σ=0.714
σ=0.730
σ=0.765

Fig. 5 TDPP for N = 100 HD with ε = 0.4 and
σ = 0.671, 0.714, 0.730, 0.765 corresponding to λ =
0.939, 1.000, 1.022, 1.071, respectively. We can see how this
density function starts changing only really near to the close
packing density λcp = 1.091, when the TDP becomes very
small at y ≈ 0

the LDF, and as a consequence the LSF, is uniform but
the RDF is not.

Note that this is just an effect of the geometry of the
confinement in fact using periodic boundary conditions
also along the transverse, y, direction one gets both
a uniform LDF and RDF as expected. Moreover, the
TDP turns out to be uniform F (y) = 1/ε irrespective
of using open or periodic boundary conditions along the
transverse direction.

For the case of our interest, with periodic boundary
conditions along x and open boundary conditions along
y, the RDF can be calculated exactly analytically as
follows (see Appendix B [40])

gid(r) =
2r

ε{
π/2 − r/ε r < ε√

(r/ε)2 − 1 − r/ε + arctan[1/
√

(r/ε)2 − 1] else
.

(3.1)

3.2 Hard disks (HD)

We tried to reproduce the case ε =
√

3/2, λ = σw = 1
of Fig. 5(a) of Ref. [23]. Our results for the LDF, LSF,
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1.2
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0 1 2 3 4 5

g(
x)

x

ε=0.866, σ=0.536, N=100
1−1/N

Fig. 6 LDF for the ideal gas with λ = 1 and ε =
√

3/2.
The MC data are fitted very well by the exact result of
gid(x) = 1 − 1/N

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5

g(
r)

r

ε=0.866, σ=0.536, N=100
analytic

Fig. 7 RDF for the ideal gas with λ = 1 and ε =
√

3/2.
Here, the g(r) is calculated from Eq. (2.6) using for nid(r)
its asymptotic value 2λΔ everywhere. The analytic result is
the one in the thermodynamic limit of Eq. (3.1). The slight
discrepancy is the expected finite size effect. Remember that
limr→∞ gid(r) = 1 − 1/N

and RDF are shown in Figs. 8, 9, and 10, respectively.
In Fig. 2, we show a snapshot of the simulation box.

We also run simulations for the cases considered in
Fig. 10 of Ref. [23]. The results are shown in Fig. 10.
Comparison with the work of Montero and Santos [23]
shows that our RDF is different from what they define
as g2D [40].

It is interesting to study how the solution of Montero
and Santos [23] performs outside of the nearest neighbor
regime where it is expected to be not exact anymore.
Such a study was carried out at the level of the com-
pressibility factor in Fig. 7 of Ref. [22]. We want here
to repeat it for the structure. In Fig. 11 we show the
comparison for the LDF between our exact MC simu-
lations and the approximate solution of Montero and
Santos for HD at λ = 1.2 and ε = 0.9, 1.0, 1.118. From

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5

g(
x)

x

ε=0.866, r0=1, σ=0.536, N=100
exact

Fig. 8 LDF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1. Our MC data are fitted very well by the

exact result of Ref. [23] which is in the thermodynamic limit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20

S(
k)

k

ε=0.866, r0=1, σ=0.536, N=100
exact

Fig. 9 LSF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1. We used 2nmax + 1 wave numbers with

nmax = 270. The exact result in the thermodynamic limit,
shared privately by A. Montero and not published before,
fits our MC results very well

the comparison, we see that the solution of Montero &
Santos, which is exact for ε ≤ εnn−HD, is a rather good
approximation for εnn−HD < ε < εsf , but it becomes
a poor approximation for ε ≥ εsf . The breakdown of
their solution at ε > 1 manifests itself through an LDF
that does not follow the exact result from the MC sim-
ulation. This confirms the findings of Kofke and Post
[30].

It is interesting to note that Hu and Charbonneau
[41] have shown how the envelope of the LDF g(x) − 1
has an exponential decay at large distances.

3.3 Square-wells (SW) and square-shoulders (SS)

For SW/SS, we explored the following two limiting
nearest neighbor cases considered in Table 1, namely:
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Fig. 10 RDF for N = 100 HD of radius r0 = 1 with ε =√
3/2 and λ = 1.0, 1.2, 1.4. The contact value for the λ =

1.2, 1.4 cases is not shown. To be compared with Fig. 10 of
Ref. [23]
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Fig. 11 LDF for N = 100 HD of radius r0 = 1 with λ =
1.2 and ε = 0.9, 1.0, 1.118. Comparison between our exact
MC simulation (thick lines) and the theoretical approximate
solution of Montero and Santos (MS) of Refs. [22,23] (thin
lines). For the MS data, we also show the exact result at
ε =

√
3/2 already published in Fig. 5(a) of Ref. [23]. The

remaining theoretical MS data were shared privately by A.
Montero and was not published before

(a) ε = 4/5, r0 = 6/5 and (b) ε =
√

7/4, r0 = 3/2,
with |βϕ0| = 1, and a surface density σ = 6/10, 7/10.
Our results for the LDF, LSF, and RDF are shown in
Figs. 12, 13, and 14, respectively. In Fig. 3, we show a
snapshot of the simulation box for SW case (a) with
σ = 7/10.

Our results show how the two cases SW and SS have
very similar structures in the confined geometry under
the nearest neighbor condition near close packing. The
difference in structure between the two cases can be bet-
ter seen at the level of the RDF where the SW produce
a negative jump at r = r0; whereas, the SS produce a
positive jump as expected.
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Fig. 12 LDF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10
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Fig. 13 LSF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10. We used 2nmax + 1 wave
numbers with nmax = 270
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Fig. 14 RDF for N = 100 SW/SS cases a with σ =
6/10, 7/10 and b with σ = 6/10. Clearly g(r) = 0 for r < 1.
Note the logarithmic scale on the ordinates
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It would be an interesting project to explore how the
sticky limit is approached in this constrained geometry
[27–29,42–46].

4 Conclusions

In this work, we performed Monte Carlo computer
experiments to extract meta data for the thermo-
dynamic and structural properties of hard-, square-
well, and square-shoulder disks in narrow channels. We
worked in the canonical ensemble. Our data are subject
only to the statistical (we never used more than 109 sin-
gle particle moves) and finite size errors (we used always
100 particles).

The novelty respect to previous studies relies in the
use of the canonical ensemble instead of the isothermal
isobaric one and in the study of both the radial and the
linear distribution functions and of both the longitudi-
nal and transverse pressures.

We compare our exact results for hard-disks with the
semi-analytic ones of Montero and Santos [22,23] which
are also exact in the nearest neighbor regime. We fur-
ther compare our results with the results of the same
authors but when the nearest neighbor condition is not
met, making their solution just an approximation. In
particular, we see how such theoretical solution ceases
to be a good approximation as soon as the single file
condition is violated.

Regarding the comparison with the works of Montero
and Santos, it is important to point out that the “exact”
approach of those authors is based on a mapping to a
pure 1D system, while our simulations deal with a true
(confined) 2D system. Thus, our results reinforce the
exact character of their method.

We are aware that Montero and Santos are currently
working at extending their theoretical framework to
include the description of particles with a potential tail
which would make possible the comparison with our
Monte Carlo simulations of the square-Well and square-
shoulder particles.
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Appendix A: On the longitudinal pressure of
HD from the LDF

Using the notation of Refs. [22,23], we have for the Equation
Of State (EOS)

ZL =
βp

λ
= 1 + A2

∑
i,j

φiφjaije
−βpaij , (A1)

where A2 and φi are the solutions to

∑
j

e−βpaij φj =
βp

A2
φi. (A2)

The LDF in the range a(ε) < x < 2a(ε) is

g(x) =
A2

λ

∑
i,j

φiφjaije
−βpxΘ(x − aij). (A3)

Our aim is to express the EOS in terms of the integrals

In =

∫ 1

a(ε)

dx xng(x), n = 0, 1 (A4)

Inserting Eq. (A3) into Eq. (A4)

I0 =
A2

βpλ

∑
i,j

φiφj

(
e−βpaij − e−βp

)
, (A5a)

I1 =
A2

(βp)2λ

∑
i,j

φiφj

[
e−βpaij (1 + βpaij)

−e−βp(1 + βp)
]
. (A5b)

From Eq. (A2), we have
∑

i,j φiφje
−βpaij = βp/A2. There-

fore,

λI0 = 1 − A2

βp
e−βp

∑
i,j

φiφj , (A6a)

βpλI1 = 1 + A2

[∑
i,j

φiφjaije
−βpaij

−e−βp

(
1 +

1

βp

) ∑
i,j

φiφj

]
. (A6b)

Comparison with Eq. (A1) yields

βpλI1 = ZL − (1 + βp)(1 − λI0). (A7)

This is a linear equation in ZL which is solved by Eq. (2.13a)
in the main text. From which immediately follows that for
the pure 1D (Hard Rods) case, we find ZL = 1/(1−λ), since
ε → 0 and a(ε) → 1 so that In = 0, as it should be [16].

Note also that from Appendix C of Ref. [23] follows that
in the p → ∞ limit or equivalently in the λ → λcp limit one
finds limλ→λcp λI0 = limλ→λcp λ2I1 = 1. In the continuum
limit, one has from Eq. (A6a)

λI0 = 1 − e−βp

	
J2, (A8a)

J =

∫ ε/2

−ε/2

φ(y) dy. (A8b)
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In the high-pressure regime

φ(y) → 1√N [φ+(y) + φ−(y)], (A9a)

φ±(y) = e−a(y±ε/2)βp, (A9b)

N → a(ε)

εβp
e−2a(ε)βp, (A9c)

	 → a(ε)

2εβp
e−a(ε)βp. (A9d)

Thus,

J =
2√N

∫ ε/2

−ε/2

φ+(y) dy. (A10)

By expanding a(y + ε/2) around y = ε/2

a(y + ε/2) → a(ε) +
ε

a(ε)
(ε/2 − y) + · · · (A11)

Therefore,

J → 2√N e−a(ε)βp

∫ ε/2

−ε/2

e
− εβp

a(ε) (ε/2−y)
dy

→ 2√N e−a(ε)βp a(ε)

εβp
= 2

√
a(ε)

εβp
. (A12)

Consequently

λI0 → 1 − 8e−βp[1−a(ε)]. (A13)

Consistency between this result and Eq. (2.15) gives Eqs.
(2.14a)–(2.14b) in the main text.

Appendix B: RDF of the ideal gas in a nar-
row channel

We arrive at the analytically exact Eq. (3.1) for the RDF
of the ideal gas confined in the narrow channel with the
following steps

gid(r) =
λ

2N

∫ L

0

dx1

∫ L

0

dx2

∫ ε/2

−ε/2

dy1
1

ε

∫ ε/2

−ε/2

dy2
1

ε

×δ(r −
√

(x2 − x1)2 + (y2 − y1)2). (B1)

Since the integrand depends only on x = |x2 − x1|, we have∫ L

0
dx1

∫ L

0
dx2 . . . = 2

∫ L

0
dx (L − x) . . .. Moreover,

δ(r −
√

x2 + s2) =
r

x
δ(x −

√
r2 − s2). (B2)

Therefore,

gid(r)

=
λ

Nε2
r

∫ ε/2

−ε/2

dy1

∫ ε/2

−ε/2

dy2

(
L√

r2 − (y2 − y1)2
− 1

)

=
2

ε2
r

∫ min(ε,r)

0

ds (ε − s)

(
1√

r2 − s2
− 1

L

)

≈ 2

ε2
r

∫ min(ε,r)

0

ds
ε − s√
r2 − s2

. (B3)

Where in the first step, we have assumed that√
r2 − (y2 − y1)2 < L and in the third step we have taken

the limit L → ∞. In the limit r � 1,
√

r2 − s2 ≈ r, so that
gid(r) ≈ 1 as expected.

The integral in Eq. (B3) can be analytically performed
and the result is given by Eq. (3.1) in the main text.
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