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Abstract. We study the Jellium model of Wigner at finite, non-zero, temperature through a computer
simulation using the canonical path integral worm algorithm where we successfully implemented the fixed-
node free particle restriction necessary to circumvent the fermion sign problem. Our results show good
agreement with the recent simulation data of Brown et al. and of other similar computer experiments on
the Jellium model at high density and low temperature. Our algorithm can be used to treat any quantum
fluid model of fermions at finite, non-zero, temperature and has never been used before in the literature.

1 Introduction

The free electron gas or the Jellium model of Wigner
[1] is the simplest physical model for the valence elec-
trons in a metal [2] (more generally it is an essential
ingredient for the study of ionic liquids (see Ref. [3]
Chapters 10 and 11): molten-salts, liquid-metals, and
ionic-solutions) or the plasma in the interior of a white
dwarf [4]. It can be imagined as a system of pointwise
electrons of charge e made thermodynamically stable
by the presence of a uniform, inert, neutralizing back-
ground of opposite charge density inside which they
move. In this work, we will only be interested in Jel-
lium in three-dimensional Euclidean space even if some
progress has been made to study this system in curved
surfaces, too [5–9].

The zero-temperature, ground-state, properties of
the statistical mechanical Jellium model thus depend
just on the electronic density n, or the Wigner–Seitz
radius rs = (3/4πn)1/3/a0 where a0 is Bohr radius,
or the Coulomb coupling parameter Γ = e2/(a0rs).
Free electrons in metallic elements [2] has 2 � rs � 4,
whereas in the interior of a white dwarf [4] rs � 0.01.
This model has been intensively studied in the second
half of last century.

The finite, non-zero, temperature model depends
additionally on a parameter Θ = T/TF where T is the
absolute temperature and TF the Fermi temperature.
This model has received much attention more recently.

The past 2 decades have witnessed an impressive
progress in experiments and also in quantum Monte
Carlo simulations, which have provided the field with
the most accurate thermodynamic data available. The
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simulations started with the pioneering work by Ceper-
ley and co-workers later developed by Filinov and co-
workers. These have been carried on for the pure Jel-
lium model [10–19], for hydrogen, hydrogen–helium
mixtures, and electron–hole plasmas. Also, we recently
applied our newly developed simulation methods to the
one-component system of charged bosons and fermions,
both in the three-dimensional Euclidean space and on
the surface of a sphere, and to the binary fermion–
boson plasma mixture at finite temperature [9,20]. In
the latter study, we discussed the thermodynamic sta-
bility, from the simulation point of view, of the two-
component mixture where the two species are both
bosons, both fermions, and one boson and one fermion.
Shortly after our results were published, other groups
reported [21] about computer experiments using meth-
ods partly similar to ours.

Today we are able to simulate on a computer the
structural and thermodynamic properties of Jellium at
finite, non-zero, temperature. This allows us to predict
thermodynamic states that would be rather difficult to
obtain in nature or in the laboratory, such as Jellium
under extreme conditions, partially polarized Jellium.
In this work, we will carry on some of these path integral
simulations which make use of the Monte Carlo tech-
nique. Monte Carlo is the best known method to com-
pute a path integral [22]. The computer experiment is
alternative to theoretical analytic approximations like
the Random-Phase-Approximation [23–30].

As will be made clear in Sect. 3, until recently, we
were unable to obtain exact numerical results even
through computer experiments since one had to face
the so called fermions sign problem which had not
been solved before the advent of recent simulation tech-
niques [15,16]. When it was demonstrated that the
fermions sign problem can be partly avoided and nearly
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exact results for the thermodynamic functions can be
obtained with an error below 1%. In other words, we
were not able to extract exact results not even numer-
ically from a simulation for fermions, unlike for bosons
or boltzmannons. Therefore, to circumvent the fermion
sign problem, we will here resort to the most widely
used approximation in quantum Monte Carlo that is
the restricted path integral fixed-node method [31,32].
But unlike previous studies, we will implement this
method upon the worm algorithm [33,34] in the canoni-
cal ensemble. Recently, we carried on [35] simulations in
the grand canonical ensemble; in the present study, we
will instead worry about a precise comparison with the
data of Brown et al. [10] who worked in the canonical
ensemble. The worm algorithm is preferable over the
usual path integral Monte Carlo methods [22] since it
is able to build the sum over the permutation through
a menu of moves on open paths—the worms—instead
of sampling the permutation sum explicitly.

The work is organized as follows: in Sect. 2, we
describe the Jellium model from a statistical physics
point of view; in Sect. 3, we describe the simulation
method; in Sect. 4, we outline the problem we want to
solve on the computer; in Sect. 5, we present our new
algorithm in detail; Sect. 6 is for our numerical results;
in Sect. 7, we summarize our concluding remarks.

2 The model

The Jellium model of Wigner [36–39] is an assembly
of N+ spin up pointwise electrons and N− spin down
pointwise electrons of charge e moving in a positive,
inert background that ensures charge neutrality. The
total number of electrons is N = N+ + N− and the
average particle number density is n = N/Ω, where
Ω is the volume of the electron fluid. In the volume
Ω = L3, there is a uniform, neutralizing background
with a charge density ρb = −en. So that the total charge
of the system is zero. The fluid polarization is then ξ =
|N+ −N−|/N : ξ = 0 in the unpolarized (paramagnetic)
case and ξ = 1 in the fully polarized (ferromagnetic)
case.

Setting lengths in units of a = (4πn/3)−1/3 and ener-
gies in Rydberg’s units, Ry = �

2/2ma2
0, where m is the

electron mass and a0 = �
2/me2 is the Bohr radius, the

Hamiltonian of Jellium is

H = − 1
r2s

N∑

i=1

∇∇∇2
ri

+ V (R), (2.1)

V =
1
rs

⎛

⎝2
∑

i<j

1
|ri − rj |

+
N∑

i=1

r2i + v0

⎞

⎠ , (2.2)

where R = {r1, r2, . . . , rN} with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background. Note that the presence

of the neutralizing background produces the harmonic
confinement shown in Eq. (2.1).

The kinetic energy scales as 1/r2s and the poten-
tial energy (particle–particle, particle–background, and
background–background interaction) scales as 1/rs, so
for small rs (high electronic densities), the kinetic
energy dominates and the electrons behave like an ideal
gas. In the limit of large rs, the potential energy dom-
inates and the electrons crystallize into a Wigner crys-
tal [40]. No liquid phase is realizable within this model
since the pair-potential has no attractive parts, even
though a superconducting state [41] may still be possi-
ble (see chapter 8.9 of Refs. [42] and [43]).

The Jellium in its ground state has been solved either
by integral equation theories [27] or by computer exper-
iments [44] in the second half of last century but more
recently it has been studied at finite, non-zero, temper-
atures by several research groups [10–12,14–18].

Following Brown et al. [10], it is convenient to intro-
duce the electron degeneracy parameter Θ = T/TF for
the Jellium at finite temperature, where TF is the Fermi
temperature of either the unpolarized (ξ = 0) or polar-
ized (ξ = 1) system

TF = TD
(2π)2

2[(2 − ξ)α3]2/3
, (2.3)

ξ is the polarization of the fluid, α3 = 4π/3 is the vol-
ume of the unit sphere, and

TD =
n2/3

�
2

mkB
=

�
2

mkBα
2/3
3 (a0rs)

2
(2.4)

is the degeneracy temperature [22], i.e. the temperature
at which the de Broglie thermal wavelength becomes
comparable to the mean separation between the parti-
cles (∝ n−1/3). For temperatures higher than TD quan-
tum effects are less relevant.

The state of the fluid will also depend upon the
Coulomb coupling parameter, Γ = e2/(a0rs)kBT [10],
so that

Θ =
rs
Γ

[
2(2 − ξ)2/3α

4/3
3

(2π)2

]
. (2.5)

The behavior of the internal energy of Jellium in its
ground state (Θ = 0) has been determined through
Diffusion Monte Carlo (DMC) by Ceperley and Alder
[44]. Three phases of the fluid appeared: for rs < 75,
the stable phase is the one of the unpolarized Jellium,
for 75 < rs < 100, the one of the polarized fluid, and
for rs > 100, the one of the Wigner crystal. They used
systems from N = 38 to N = 246 electrons.

It was shown in Ref. [13] that the data of Brown
et al. [10,11], for the finite, non-zero temperature
case, are inaccurate at high densities, rs � 1. This
appears to be a systematic error, of up to 10%, of
the restricted path integral fixed node method. Thus,
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it would be interesting to know whether this prob-
lem may be solved with our present method, which
seems a promising route to access higher densities.
They provide results for the thermodynamic proper-
ties of Jellium with 33 fully polarized, ξ = 1 elec-
trons and 66 unpolarized, ξ = 0 electrons, in the
warm-dense regime: rs = 1, 2, 4, 6, 8, 10, 40 and Θ =
0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8.

3 The simulation

The density matrix of a system of many fermions at
temperature kBT = β−1 can be written as an integral
over all paths {Rt | 0 ≤ t ≤ β}

ρF (Rβ , R0;β)

=
1

N !

∑

P
(−1)P

∮

PR0→Rβ

dRt exp(−S[Rt]),

(3.1)

where Rt = {r1(t), . . . , rN (t)} represents the positions
of all the particles at imaginary time t. The path begins
at PR0 and ends at Rβ ; P is a permutation of particles
labels. For non-relativistic particles interacting with a
potential V (R), the action of the path, S[Rt], is given
by

S[Rt] =
∫ β

0

dt

[
r2s
4

∣∣∣∣
dRt

dt

∣∣∣∣
2

+ V (Rt)

]
. (3.2)

Thermodynamic properties, such as the energy, are
related to the diagonal part of the density matrix, so
that the path returns to its starting place or to its per-
mutation P after a time β.

To perform Monte Carlo calculations of the inte-
grand, one makes the imaginary time discrete with a
time step τ , so that one has a finite (and hopefully
small) number of time slices and thus an isomorphic
classical system of N particles in M = β/τ time slices;
an equivalent NM particle classical system of “poly-
mers” [22].

Note that in addition to sampling the path, the per-
mutation is also sampled. This is equivalent to allow-
ing the ring polymers to connect in different ways.
This macroscopic “percolation” of the polymers is
directly related to superfluidity, as Feynman [45–47]
first showed for bosons. Any permutation can be bro-
ken into cycles. Superfluid behavior can occur at low
temperature when the probability of exchange cycles
on the order of the system size is non-negligible. The
superfluid fraction can be computed in a path inte-
gral Monte Carlo (PIMC) calculation as described in
Ref. [43]. The same method could be used to calculate
the superconducting fraction in Jellium at low tempera-
ture. However, the straightforward application of those
techniques to Fermi systems means that odd permuta-
tions must be subtracted from the integrand. This is

the “fermions sign problem” [31] first noted by Feyn-
man [48] who after describing the path integral theory
for boson superfluid 4He, pointed out: “The [path inte-
gral] expression for Fermi particles, such as 3 He, is
also easily written down. However in the case of liquid
3 He, the effect of the potential is very hard to evaluate
quantitatively in an accurate manner. The reason for
this is that the contribution of a cycle to the sum over
permutations is either positive or negative depending
whether the cycle has an odd or an even number of
atoms in its length [. . .]. At very low temperature [. . .],
it is very difficult to sum an alternating series of large
terms which are decreasing slowly in magnitude when a
precise analytic formula for each term is not available.”

Thermodynamic properties are averages over the
thermal, N -fermions density matrix which is defined
as a thermal occupation of the exact eigenstates φi(R)

ρF(R,R′;β) =
∑

i

φ∗
i (R)e−βEiφi(R′). (3.3)

The partition function is the trace of the density matrix

Z(β) = e−βF =
∫

dR ρF(R,R;β) =
∑

i

e−βEi .(3.4)

Other thermodynamic averages are obtained as

〈O〉 = Z(β)−1

∫
dRdR′ 〈R|O|R′〉ρF(R′, R;β). (3.5)

Note that for any density matrix the diagonal part is
always positive

ρF(R,R;β) ≥ 0, (3.6)

so that Z−1ρF(R,R;β) is a proper probability distri-
bution. It is the diagonal part which we need for many
observables, so that probabilistic ways of calculating
those observables are, in principle, possible.

Path integrals are constructed using the product
property of density matrices

ρF(R2, R0;β1 + β2)

=
∫

dR1 ρF(R2, R1;β2)ρF(R1, R0;β1), (3.7)

which holds for any sort of density matrix. If the prod-
uct property is used M times we can relate the den-
sity matrix at a temperature β−1 to the density matrix
at a temperature Mβ−1. The sequence of intermediate
points {R1, R2, . . . , RM−1} is the path, and the time
step is τ = β/M . As the time step gets sufficiently
small the Trotter theorem tells us that we can assume
that the kinetic T and potential V operator commute so
that: e−τH = e−τT e−τV and the primitive approxima-
tion for the fermions density matrix is found [22]. The
Feynman–Kac formula for the fermions density matrix
results from taking the limit M → ∞. The price we
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have to pay for having an explicit expression for the
density matrix is additional integrations; all together
3N(M − 1). Without techniques for multidimensional
integration, nothing would have been gained by expand-
ing the density matrix into a path. Fortunately, simu-
lation methods can accurately treat such integrands.
It is feasible to make M rather large, say in the hun-
dreds or thousands, and thereby systematically reduce
the time-step error.

One can then measure [22] the internal energy
(kinetic plus potential energy) per particle using the
thermodynamic estimator, the pressure using the virial
theorem estimator, the static structure (the radial dis-
tribution function), and the superconducting fraction
of Jellium.

One solution to Feynman’s task of rearranging terms
to keep only positive contributing paths for diagonal
expectation values is the restricted or fixed-nodes path
integral identity. Suppose ρF is the density matrix cor-
responding to some set of quantum numbers which is
obtained using the antisymmetrization operator A act-
ing on the same spin groups of particles on the distin-
guishable particle density matrix. Then the following
Restricted Path Integral identity holds [31,32].

ρF(Rβ , R0;β)

=
∫

dR′ ρF(R′, R0; 0)
∮

R′→Rβ∈γ(R0)

dRt e−S[Rt],

(3.8)

where the subscript means that we restrict the path
integration to paths starting at R′, ending at Rβ and
node-avoiding (those for which ρF(Rt, R0; t) �= 0 for
all 0 < t ≤ β), i.e. paths staying inside the reach
of the reference point R0, [32] γ(R0) or the nodal
cell [31]. The weight of the walk is ρF(R′, R0; 0) =
(N !)−1

∑
P(−)Pδ(R′ − PR0). It is clear that the con-

tribution of all the paths for a single element of the
density matrix will be of the same sign, thus solving
the sign problem; positive if ρF(R′, R0; 0) > 0, neg-
ative otherwise. On the diagonal the density matrix
is positive and on the path restriction we can always
choose ρF(Rt, R0; t) > 0 for 0 < t ≤ β, then only
even permutations are allowed since ρF(R0,PR0;β) =
(−)PρF(R0, R0;β). It is then possible to use a bosons
calculation to get the fermions case once the restriction
has been correctly implemented.

The problem we now face is that the unknown density
matrix appears both on the left-hand side and on the
right-hand side of Eq. (3.8) since it is used to define the
criterion of node-avoiding paths. To apply the formula
directly, we would somehow have to self-consistently
determine the density matrix. In practice what we need
to do is make an ansatz, which we call ρT, for the nodes
of the density matrix needed for the restriction. The
trial density matrix, ρT, is used to define the trial reach:
γT(R0).

Then if we know the reach of the fermion density
matrix we can use the Monte Carlo method to solve the
fermion problem, restricting the path integral (RPIMC)

to the space-time domain where the density matrix has
a definite sign (this can be done, for example, using
a trial density matrix whose nodes approximate well
the ones of the true density matrix). Furthermore, we
use the antisymmetrization operator to extend it to the
whole configuration space (using the tiling [31] prop-
erty of the reach),

⋃
Pe

γT(PeR0), where only even per-
mutations Pe are needed. This will require the compli-
cated task of sampling the permutation space of the
N -particles [22]. Recently, an intelligent method has
been devised to perform this sampling through a new
algorithm called the worm algorithm [33,34]. To sample
the path in coordinate space, one generally uses various
generalizations of the Metropolis rejection algorithm
[49] and the bisection method [22] to accomplish mul-
tislice moves which becomes necessary as τ decreases.

The pair-product approximation for the action [22]
was used by Brown et al. [10] to write the many-body
density matrix as a product of high-temperature, two-
body density matrices [22]. The pair Coulomb density
matrix was determined using the results of Pollock [50],
even if these could be improved using the results of
Vieillefosse [51,52]. This procedure comes with an error
that scales as ∼ τ3/r2s where τ = β/M is the time step,
with M the number of imaginary time discretizations. A
more dominate form of time step error originates from
paths which cross the nodal constraint in a time less
than τ . To help alleviate this effect, Brown et al. [10]
use an image action to discourage paths from getting
too close to nodes. Additional sources of error are the
finite size one and the sampling error of the Monte Carlo
procedure itself. In their analysis, for the highest den-
sity points, statistical errors are an order of magnitude
higher than time step errors.

In our calculation, for simplicity, we will use the prim-
itive approximation [22] for the action. This procedure
comes with an error that scales as ∼ τ2/r2s . And we will
have the additional sources of error due to the finite
size and the sampling of the Monte Carlo procedure
itself, as usual. For the highest density points, statisti-
cal errors are of order 10−3, in the potential energy or
in the pressure, whereas τ2/r2s ≈ 10−6.

4 The problem

Like Brown et al. [10] we adopted as trial density
matrix for the path integral nodal restriction a free
fermion density matrix. This allowed us to implement
the restriction in the path integral calculation from the
worm algorithm [34,53] to the reach of the reference
point in the moves ending in the Z sector: remove, close,
wiggle, and displace. The worm algorithm is a partic-
ular path integral algorithm where the permutations
need not to be sampled as they are generated with the
simulation evolution. Instead of the pair-product action
used by Brown et al. [10], we used the primitive approx-
imation for the action [22] and modified the original
worm algorithm so that it would work in the presence of
the nodal restriction and in a canonical ensemble calcu-
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lation at fixed number of particles N , volume Ω = Nα3,
and temperature T . We should mention that, due to the
choice of approximation for the action, our results will
suffer of some additional systematic error respect to the
data of Brown et al., although small.

The restriction implementation is rather simple: we
just reject the move whenever the proposed path is
such that the ideal fermion density matrix calculated
between the reference point and any of the time slices
subject to newly generated particles positions has a neg-
ative value. Our algorithm is described in detail in the
following section.

The trial density matrix used to perform the restric-
tion of the fixed-nodes path integral is chosen as the
one of ideal fermions which is given by

ρ0(R,R′; t) ∝ A
[
e−

(ri−r′
j)2

4λt

]

ξ=1
= det

[
exp

(
−

r2s(ri − r′
j)

2

4t

)]
, (4.1)

where λ = �
2/2m, t is the imaginary time, and A is

the antisymmetrization operator acting on the same
spin groups of particles, which for polarized electrons
reduces to a single determinant, and the distances√

(ri − r′
j)2 are calculated taking care, as usual, of the

wrapping due to the periodic boundary conditions. We
expect this approximation to be best at high temper-
atures (high Θ) and high densities (low rs) when the
quantum and correlation effects are weak. Clearly in
a simulation of the ideal gas (V = 0) this restriction
returns the exact result for fermions.

The Coulomb potential is treated through the method
of Fraser et al. [54] which is alternative to the Ewald
summation of Natoli and Ceperley [55], to cure its long-
range nature.

5 Our algorithms

Our algorithm, that we will call algorithm A, briefly
presented in the previous section is based on the worm
algorithm of Boninsegni et al. [34,53,56–58]. The algo-
rithm of Boninsegni et al. solves the path integral in the
grand canonical ensemble and uses a menu of 9 moves.
Three are self-complementary: swap, displace, and wig-
gle, and the other six are 3-couples of complementary
moves: insert–remove, open–close, and advance–recede.
These moves act on “worms” with an head Ira and a tail
Masha in the β-periodic imaginary thermal time, which
can swap a portion of their bodies (swap move), can
move forward and backward (advance–recede moves),
can be subdivided in two or joined into a bigger one
(open–close moves), and can be born or die (insert–
remove moves) since we are working in the grand-
canonical ensemble. The configuration space of the
worms is called the G sector. When the worms recom-
bine to form a closed path (“world line”) we enter the

so called Z sector and the path can translate in space
(displace move) and can propagate in space through the
bisection algorithm (wiggle move), carefully explained
in Ref. [22]. To reduce the grand canonical algorithm
to a canonical calculation it is sufficient to choose the
chemical potential equal to zero everywhere in the algo-
rithm and to reject all the moves attempting to change
the number of particles N in the Z sector. Of course
it is necessary to initialize the calculation from a path
containing the given number N of particles.

To get the restricted path integral we choose the
trial density matrix as the one of the non-interacting
fermions (4.1) and restrict the Z to Z and the G to
Z moves, that is: displace, wiggle, close, and remove.
To implement the restriction we reject the move when-
ever the proposed path is such that the ideal fermions
density matrix of Eq. (4.1) calculated between the ref-
erence point R0 and any of the time slices subject to
newly generated particles positions, Rt with 0 < t ≤ β,
changes sign. That is, whenever the path ends up in
a region not belonging to the trial reach of the ref-
erence point. So, we implemented the rejection every
time we encounter ρ0(Rt, R0; t)ρ0(Rτ , R0; τ) < 0 for all
τ < t ≤ β. We generally run our simulations with an
acceptance ratio for the occupation of the Z sector close
to 1/2. When calculating diagonal properties we con-
sider the density matrix averaged over the entire path
and not only at the reference point. For each move we
can decide the frequency of the move and the maximum
number of time slices it operates on, apart from the dis-
place move where instead of the maximum number of
time slices we can decide the maximum extent of the
spatial translation displacement.

We noticed that doing like so, at low temperature,
the simulation with all the moves activated would enter
the G sector without being able to get out of it (To
exit the G sector the temporal distance between Ira
and Masha must be close to 0 or β and the spatial dis-
tance close to 0. The temporal distance is a stochastic
variable which change of an amount β in a number of
moves of the order of M2. So at larger M the change
of sector becomes rarer). So at first we switched off the
advance–recede and swap moves and more generally the
access to the G sector (by properly adjusting the dimen-
sionless parameter C [34,53] which controls the relative
statistics of Z and G-sectors) in our simulations. This
is equivalent to restrict the configuration space to only
the primal nodal cell γT(R0) neglecting the other tiles
obtained applying even permutations to the reference
point R0 according to the tiling property [31].

To include correctly the permutations and the tran-
sition through the G sector of the worm algorithm, in
our low-temperature simulations, we had to use a dif-
ferent algorithm that we will call algorithm B. Instead
of using a generic G sector, we work in a restricted
one where we impose equal imaginary times for Ira and
Masha and a spatial distance between Ira and Masha
equal to εL with ε < 1 (here it is important not to
take ε too small otherwise the acceptance ratios of the
various moves ending in the G sector will go to zero).
That is, rather than using the sector of the numerator
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Table 1 Thermodynamic results in our simulations with ξ = 1 and N = 33 electrons interacting through the pair-potential
φ(r) = v(r) − ND/(N − 1) of Eqs. (6.1)–(6.2), at a density fixed by rs, temperature fixed by Θ (at a Coulomb coupling
constant Γ), and with M time slices: e0 (Ry) is the internal energy per particle of the ideal gas, P0 (Ry/r3

sa
3
0) is the pressure

of the ideal gas, ek (Ry) is the kinetic energy per particle in our simulation, eBrown
k (Ry) is the kinetic energy per particle

in Brown et al. [10] simulation, ep (Ry) is the potential energy per particle in our simulation, eBrown
p (Ry) is the potential

energy per particle in Brown et al. [10] simulation, et (Ry) = ek + ep is the total energy per particle in our simulation,
and P (Ry/r3

sa
3
0) is the pressure in our simulation. In these simulations, we used algorithm A with the advance–recede and

swap moves switched off

M rs Θ Γ e0 P0 eBrown
k eBrown

p ek ep et P

244 1 1 0.342 9.920268 1.578860 9.72(2) − 0.938(1) 9.67(5) − 0.970(3) 8.70(5) 2.670(7)
489 1 0.5 0.684 5.973201 0.950664 5.72(2) − 1.088(1) 5.67(8) − 1.133(3) 4.53(8) 2.02(1)
977 1 0.25 1.368 4.307310 0.685530 4.12(4) − 1.171(1) 4.9(1) − 1.233(2) 3.7(1) 1.89(2)
1000 1 0.125 2.737 3.727579 0.593263 3.64(1) − 1.1961(5) 4.73(6) − 1.276(1) 3.46(6) 1.861(9)
253 2 1 0.684 2.480067 0.394715 2.419(5) − 0.5280(4) 2.39(1) − 0.542(1) 1.85(1) 0.941(2)
507 2 0.5 1.368 1.493300 0.237666 1.435(5) − 0.5917(2) 1.46(2) − 0.612(1) 0.85(2) 0.788(3)
1000 2 0.25 2.737 1.076827 0.171382 1.050(7) − 0.6219(2) 1.24(3) − 0.6484(9) 0.59(3) 0.750(4)
1000 2 0.125 5.473 0.931895 0.148316 0.906(4) − 0.6302(1) 1.22(2) − 0.663(1) 0.55(2) 0.745(4)
128 4 1 1.368 0.620017 0.098679 0.597(1) − 0.2885(3)* 0.593(1) − 0.3026(1) 0.290(1) 0.3725(2)
256 4 0.5 2.737 0.373325 0.059416 0.367(1) − 0.3206(1) 0.361(2) − 0.3282(2) 0.033(2) 0.3335(3)
512 4 0.25 5.473 0.269207 0.042846 0.269(1) − 0.3302(1) 0.303(2) − 0.3396(1) −0.036(2) 0.3234(3)
1000 4 0.125 10.946 0.232974 0.037079 0.237(1) − 0.3318(1) 0.30(1) − 0.3444(6) −0.05(1) 0.322(2)

of the whole Green’s function, one works with the sector
of the single-particle density matrix at a distance less
than εL. We accomplished this by constructing the fol-
lowing set of three, Z to G, G to Z, and G to G, moves
obtained by combining the elementary moves of the
usual worm algorithm [34,53]: open–advance (removes
a random number m of time slices and advances Ira
of m time slices), recede–close (recedes Ira by a ran-
dom number m of time slices and closes the worm),
advance–recede (advances Ira by a random number m
of time slices and advances Masha by the same number
of time slices). Moreover we just killed the usual insert
and remove moves which would have to use a number
of time slices equal to M and would thus have very low
acceptance ratios. Each of these three combined moves
produces a configuration with an Ira and a Masha at
the same imaginary time. We did not change all the
other moves: swap, wiggle, and displace. This amounts
to simulate a G sector for the one-body density matrix
(which can be obtained from the histogram of the spa-
tial distance between Ira and Masha). We note that
this algorithm is inherently a canonical ensemble one.
Moreover we rejected those moves which would bring to
have a spatial distance between Ira and Masha larger
than εL. We then introduced the nodal restriction also
on this set of three moves: open–advance, recede–close,
advance–recede, choosing as the reference point the one
immediately next to Ira in imaginary time.

We used this other algorithm to simulate just two
of the low-temperature cases among the twelve cases
considered in the next section and observed a rele-
vant improvement in the numerical results as compared
with the existing literature data. This fact validated our
algorithms.

It is well known that Monte Carlo algorithms works
better as long as we have a richer moves’ menu, unless

of course one violates detailed balance. So our modified
worm algorithm is very efficient in exploring all the elec-
trons path configurations with all the necessary permu-
tation exchanges, even if in our restricted version, the
winding numbers will reflect the restriction. We will not
be able to determine the superfluid fraction in our simu-
lations. This is a shortcoming of applying the restricted
path integral method where the winding numbers are
biased by the restriction.

6 Results

We simulated the Jellium at high density and low tem-
perature. Given the bare Coulomb potential v(r) =
2 Ry/rsr, according to Fraser et al. [54], it is possi-
ble to use in the simulation the following pair-potential
φ,

φ(r) = v(r) − N

N − 1
D, (6.1)

D =
1
Ω

∫

cell

v(r) dr. (6.2)

This method is equivalent to the Ewald summation
technique or to its developments like the one carried on
by Natoli and Ceperley [55] and gives smaller finite-size
effects. The method is much more simple to implement
than the more common Ewald sums but of course it
has discontinuities when jumping from one side of the
simulation cell to the other. The additive constant D
is chosen to make sure that the average value of the
interaction is zero and the self energy of the electrons
is taken as zero.
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Fig. 1 We show a comparison of our results at the three
different values of density (rs = 1, 2, 4), with (with perm.)
and without (no perm.) permutations, for the kinetic energy
per particle (top panel) and the potential energy per particle
(bottom panel) with the results of Brown et al. [10] (Brown)
as they are reported in Tables 1 (no perm.) and 2 (with
perm.)

In Table 1, we present our results for various ther-
modynamic quantities in the fully polarized ξ = 1 case
with N = 33 particles. The statistical errors in the
various measured quantities were determined, as usual,
through the estimate of the correlation time of the given
observable O, τO, as error =

√
τOσ2

O/N , where σ2
O is

the variance of O and N is the number of MC steps. Our
results can be directly compared with the ones of Brown
et al. [10]. Benchmark data correcting systematic errors
[59] up to a 10% in the high-density rs � 1 and low-
temperature cases of Brown et al., can be found in Refs.
[13,15,16,60,61]. The time steps τ chosen in the simu-
lations are like the ones chosen by Brown et al. [10] as a
function of rs at all temperatures: τ = 0.0007 for rs = 1,
τ = 0.0027 for rs = 2, and τ = 0.0214 for rs = 4 but in
any case with M not bigger than 103. From the table,
we can see how our results agree well with the ones
of Brown et al. [10]: The kinetic energy, in the high-
est density case, is within a 0.5% at high temperatures
(in the correct direction given by the later results of

0.0

0.5

1.0

0 1 2

(a) N=33  ξ=1  Θ=1

g(
r)

r/a0rs

DH
DH
DH

rs=1
rs=2
rs=4

0.0

0.5

1.0

0 1 2

(b) N=33  ξ=1  rs=1

g(
r)

r/a0rs

DH
Θ=1

Θ=0.5
Θ=0.25

Θ=0.125

Fig. 2 The radial distribution function for Jellium in
selected states of Table 1, from algorithm A, at fixed tem-
perature in the upper panel (a) and at fixed density in
the lower panel (b). Also shown is the Debye–Hückel (DH)
result [39] for the high temperature and low density limit,

gDH(r) = exp
[
−Γ

r
exp

(
−√

3Γr
)]

Refs. [13,61]) and up to a 35% in the lower temperature
case. This discrepancy increase is due to the fact that in
these simulations we had the advance–recede and swap
moves switched off, so we were not sampling the whole
fermions configuration space but only the primal nodal
cell (the one connected directly to the reference point
itself), as explained in the previous section. This clearly
becomes more and more important at low temperature
when the quantum effects are more relevant.

The data denoted with an asterisk in the table have
been considerably corrected by the later work of Groth
et al. [61], who give ep = − 0.305012(33), which is much
closer to our result.

In Fig. 1, we show a comparison of our results for the
kinetic energy per particle (top panel) and the poten-
tial energy per particle (bottom panel) with the results
of Brown et al. [10]. From the figure, we see clearly how
our results with no permutations reproduce well the
results of Brown et al., at sufficiently high temperatures
and low densities. And our results with the permuta-
tions switched on corrects the discrepancy observed at
low temperatures (small Θ) and high densities (small
rs).

123



   63 Page 8 of 10 Eur. Phys. J. B           (2021) 94:63 

Table 2 Same as Table 1 but using our algorithm B in the high-density low-temperature simulations

M rs Θ Γ e0 P0 eBrown
k eBrown

p ek ep et P

977 1 0.25 1.368 4.307310 0.685530 4.12(4) − 1.171(1) 4.1(2) − 1.226(5) 2.9(2) 1.76(4)
1000 1 0.125 2.737 3.727579 0.593263 3.64(1) − 1.1961(5) 3.8(2) − 1.280(6) 2.5(2) 1.73(2)

0.0

0.5

1.0

0 1 2

N=33  ξ=1  rs=1  Θ=0.125

g(
r)

r/a0rs

A
B

Fig. 3 The radial distribution function forJellium in the
ξ = 1, rs = 1, Θ = 0.125 state as obtained from our two
algorithms A and B: The one without G sector and the one
with G sector, respectively

In Fig. 2, we show our results for the radial distribu-
tion function [62], g(r), for selected states of Table 1 at
fixed temperature and at fixed density, respectively.

As outlined in the previous section we repeated the
calculation for the low temperature cases ξ = 1, rs =
1,Θ = 0.25 and Θ = 0.125 with our modified algorithm
B, with ε = 1/2, able to sample the whole fermions
configuration space including the necessary permuta-
tions. The result in these cases were encouraging and
are shown in Table 2. They were much closer to the cor-
responding result of Brown et al. [10] than the results
obtained with the previous algorithm A: The kinetic
energy, in the highest density case, is within a 5% at
low temperatures. We also checked that the two algo-
rithms, A and B, coincide at high temperature. This
validates our algorithms A and B.

In Fig. 3, we show our results for the radial dis-
tribution function for the ξ = 1, rs = 1,Θ = 0.125
state obtained with the algorithm with the G sector
switched off (A) and with the algorithm with the G
sector switched on (B).

From the figure, we see how the Fermi hole dimin-
ishes by the introduction of the permutations in the
calculation.

7 Conclusions

We have successfully implemented the ideal fermion
density matrix restriction on the path integral worm
algorithm which is able to generate the necessary

RPIMC moves during the simulation evolution thereby
circumventing the otherwise inevitable sign problem.
This allowed us to reach the finite, non-zero, tempera-
ture properties of a given fluid model of Fermi particles
interacting through a given pair-potential. We worked
in the canonical ensemble and applied our method to
the Jellium fluid of Wigner. We explicitly compared
our results with the previous canonical calculation of
Brown et al. [10] in the high density and low tempera-
ture regime where their algorithm had problems in sam-
pling the path [59]. Our results complement the ones of
Brown et al., with the treatment of the high density
rs ≤ 4 and low temperature cases which were found to
be inaccurate by Bonitz et al. [13,16,61] who suggested
an alternative algorithm to circumvent the systematic
errors in Brown calculations [59].

The relevance of our study relies in the fact that our
simulation method is different from both the method
of Ceperley et al. [10,11] who uses the fixed-nodes
approximation in the canonical ensemble of a regu-
lar, and not worm, PIMC [22], and from the one of
Bonitz et al. [12,14–16] who combine configuration- and
permutation-blocking PIMC. Our method is also differ-
ent from other quantum Monte Carlo methods like the
one of Malone et al. [17] that agrees well with the one of
Bonitz et al. at high densities and the direct PIMC one
of Filinov et al. [18] that agrees well with Brown et al.,
at low density and moderate temperature. So our new
algorithms add to the ones already used in the quest for
an optimal way to calculate the properties of the fasci-
nating Wigner’s Jellium model at finite, non zero, tem-
peratures. We devised two different algorithms, A and
B. In algorithm A, we used a restricted, fixed-nodes,
worm algorithm which never passes through the G sec-
tor. In algorithm B we used a restricted, fixed-nodes,
worm algorithm with a G sector which has Masha and
Ira always at the same imaginary time and at a given
small spatial distance. In both cases, the restriction of
the fixed-nodes path integral is the one from a trial
density matrix equal to the one of ideal fermions.

We obtained results for both the static structure
(the radial distribution function) and various thermo-
dynamic quantities (energy and pressure) for the Jel-
lium model with N = 33 fully polarized (ξ = 1) elec-
trons at high density and low temperature. Our results
compare favorably with the ones of Brown et al. [10]
with a discrepancy on the kinetic energy, in the highest
density case, up to a 0.5% at high temperatures (with
our algorithm A) and up to 5% at low temperatures
(with our algorithm B). Our results can also be com-
pared with the later ones of Refs. [13,61] with which
the agreement increases even further. This validates our
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algorithms which are alternative to the ones that have
already been used in the literature.

We expect in the near future to explicitly determine
the dependence of the Jellium properties (structural
and thermodynamic) on the polarization ξ. We would
also like to carry out a more comprehensive compar-
ison with the results in the literature and to predict
other results yet to be determined through quantum
Monte Carlo methods, like the static structure function.
Regarding improvements to the algorithm we would like
to implement the use of better approximations for the
action in the path integral and a search for better trial
density matrices to guide the fixed nodes at low tem-
peratures or the implementation of the released-nodes
recipe.

Another important problem to solve is the one of cal-
culating the superfluid fraction for fermions or super-
conducting fraction for electrons. The winding numbers
that one is computing in RPIMC are not be sufficient
to determine the superfluid fraction since there is the
restriction on the paths.

We would like to thank Saverio Moroni for several relevant
discussions at S.I.S.S.A. of Trieste, Boris Svistunov for use-
ful e-mail and Skype suggestions on how to implement our
algorithm B, and David Ceperley for many e-mail exchanges
which have been determinant for the completion of the work.
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