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Abstract. We perform path integral Monte Carlo simulations to study the imaginary time dynamics of
metastable supercooled superfluid states and nearly superglassy states of a one component fluid of spinless
bosons square wells. Our study shows that the identity of the particles and the exchange symmetry is
crucial for the frustration necessary to obtain metastable states in the quantum regime. Whereas the
simulation time has to be chosen to determine whether we are in a metastable state or not, the imaginary
time dynamics tells us if we are or not close to an arrested glassy state.

If a liquid can be cooled below its melting tempera-
ture Tm without the occurrence of crystallization, it is
called a good glass former, and when the temperature is
less than Tm the system is called supercooled. The static
and dynamical properties of such systems can be studied
over a large temperature range below Tm and it is found
that their relaxation times increase very quickly by many
decades if the temperature is lowered. At a certain tem-
perature the relaxation time exceeds the timescale of the
experiment and therefore the system will fall out of equi-
librium. It is this falling out of equilibrium that is called
the glass transition. At temperatures well below this glass
transition temperature no relaxation seems to take place
any longer, on any reasonable timescale, and it is custom-
ary to call this material a glass. This transition temper-
ature will in general depend on the type of experiment,
since its definition involves the timescale of the experi-
ment. Understanding the transition from a supercooled
liquid to a glass, or a disordered solid, is one of the major
open problems in condensed matter.

In a liquid of number density ρ, made of mass m par-
ticles, moving in a d-dimensional space, the quantum ef-
fects will become important when the temperature T is
comparable or smaller than the degeneracy temperature
TD = 2λρ2/d, where λ = �

2/2m and � is the reduced
Planck constant. A liquid such that TD > Tm is therefore
likely to form a quantum glass.

At a temperature TMCT < Tm a kinetic glass transi-
tion towards an arrested state is predicted by the mode
coupling theory (MCT) [1,2]. Many of the qualitative pre-
dictions of this theory have been confirmed in experiments
and computer simulations, and thus MCT can currently
be regarded as the best available theory of the dynamics
of supercooled liquids.

Our aim in this letter is to use path integral Monte
Carlo (PIMC) simulations [3] to gain an understanding on
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the very general question of the search for an arrested state
when the temperature approaches TMCT. Since we are in-
terested in a universal property of glassy systems, our sim-
ulations are carried out with a very simple and unrealistic
model liquid, namely the square-well bosons [4]. We will be
working at very low temperatures T ≈ Tm < TD. We will
find metastable supercooled superfluid states and evidence
for development towards a superglass state [5–7] which
should appear at even lower temperatures T ≈ TMCT.

Using the terminology of reference [3] we are then look-
ing for local minima of the action of the primitive ap-
proximation, up to thermal activation according to the
Metropolis algorithm [8]. These may differ from the ones
of the inter-action due to quantum tunneling. In particu-
lar we will be interested in how the identity of the particles
and their exchange permutation cycles which forms in a
PIMC simulation frustrates the development towards the
global minimum of the action favoring the formation of
the metastable supercooled states [9].

Consider a fluid (homogeneous and isotropic) of N
bosons in a volume V and density ρ = N/V at a given
absolute temperature T = 1/kBβ, with kB Boltzmann
constant, with a Hamiltonian

H = −λ
N∑

i=1

∇2
i +

∑
i<j≤N

φ(|ri − rj |)

symmetric under particle exchange, with λ = �
2/2m, m

the mass of the particles, and φ(|ri−rj |) the pair-potential
of interaction between particle i at ri and particle j at rj .
The dynamic structure factor is defined as follows:

S(k, ω) =
1

2πN

∫ ∞

−∞
dt e−iωt〈ρ−k(0)ρk(t)〉

=
∫ ∞

−∞
dt e−iωtF (k, t),
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where

ρ(r) =
N∑

i=1

δ(r − ri)

with 〈ρ(r)〉 = ρ, ρ(r, t) = eiHt/�ρ(r)e−iHt/�, ρk(t) =∫
dr eik·rρ(r, t), and ρk(0) = ρk. Given an observable O

we define the statistical average as 〈O〉 = Tr
(
Oe−βH)

/Z

with Z = Tr(e−βH) the partition function.
We introduce the analytic continuation of F (k, t) =∫ ∞

−∞ dω e−�ωtS(k, ω) in imaginary time as follows

Fk(t) =
1

NZ
Tr

(
ρ−ke−tHρke−(β−t)H

)
. (1)

So that Fk(0) = 2πF (k, 0) =
∫ ∞
−∞ dω S(k, ω) = S(k) is

the static structure factor such that limk→∞ S(k) = 1.
Clearly we have that Fk(t) = 2πF (k, i�t) is defined

for t ∈ [0, β] being symmetric respect to t = β/2 since
S(k,−ω) = e−βωS(k, ω).

The calculation of Fk(t) of equation (1) becomes
straightforward in path integral Monte Carlo (PIMC) [3]
where it is sufficient to average the product of ρ−k on the
first time-slice with ρk at a time-slice a time t later.

The dynamic structure factor for the ideal Bose gas for
particles of spin s at a temperature T below the critical
temperature kBTc = 4πλ{ρ/[(2s + 1)ζ(3/2)]}2/3, where ζ
is the Riemann zeta function, is given by equation (18) in
reference [10]1, where their λ is our

√
4πλβ, the de Broglie

wavelength.
In particular one finds

dFk(t)
dt

∣∣∣∣
t=0

= −
∫ ∞

−∞
dω �ωS(k, ω) = −λk2.

In Figure 1 we show how Fk(t) is well-approximated by a
pure exponential decay S(k)e−λk2t for t ∈ [0, β/2].

We performed grand canonical PIMC with the “worm”
algorithm [11] for a system of spin zero square-well bosons
in three spatial dimensions. As usual the path R(t) is
discretized in imaginary time t extending from t = 0 to
t = β = nτ τ with a time-step τ . It is made of Nnτ beads
of coordinates R(t) = {(xi(t), yi(t), zi(t)) ∀i = 1, . . . , N}
at each time-slice t = tj = jτ . The particles pair-potential
is as follows

φ(r) =

⎧⎨
⎩

+∞ r < σ
−ε σ ≤ r < σ(1 + Δ)
0 σ(1 + Δ) ≤ r.

(2)

We choose ε > 0 as the unit of energies and σ as the
unit of lengths. We then introduce a reduced temperature
T ∗ = kBT/ε (with β∗ = 1/T ∗), a reduced density ρ∗ =
ρσ3, and a reduced chemical potential μ∗ = μ/ε. When
the mass m of the bosons and/or the depth of their at-
tractive well ε are sufficiently large, i.e. λ∗ = λ/(εσ2) 
 1
we are in the classical limit. The classical fluid has been

1 There is a misprint in equation (18) where the denominator
of the term containing the Dirac delta functions should read
1 − e−ω/ωT .
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Fig. 1. Behavior of Fk(t), as a function of the imaginary time
t ∈ [0, β], for an ideal Bose gas below its critical temperature
at k = 3, λ = 1, kBT = 1, ρ = 0.4, and s = 0. The critical
temperature is kBTc = 3.597. The points are the numerical
results from equations (1) and equation (18) of reference [10].
On the ordinates axis we use a logarithmic scale.

studied originally by Vega et al. [12] who found that the
critical point of the gas-liquid coexistence moves at lower
temperatures and higher densities as Δ gets smaller. The
quantum mechanical effects on the thermodynamic prop-
erties of nearly classical liquids can be estimated by the
de Boer quantum delocalization parameter � =

√
2λ∗ [13].

The phase diagram of the system in the quantum regime,
T ∗ � T ∗

D = 2λ∗(ρ∗)2/3, has recently been studied by us [4]
with our quantum Gibbs ensemble MC algorithm [14].

Unlike the work of Biroli et al. [6] we will work far
away from the sticky limit [15] obtained by setting the
stickiness parameter T −1 = 12eβεΔ and taking the double
limit ε → ∞ and Δ → 0 at fixed T . We could reach
numerically such limit by taking Δ small enough [16–18].
Instead we will fix Δ = 0.5 in all cases as was done in the
previous analysis of reference [4].

In the present letter we want to study the relaxation
to zero of the Fk(t) in the quantum regime, so we must
choose λ∗ � 0 and T ∗ � T ∗

D. Choosing λ∗ = 1 we
must choose a sufficiently small temperature and a suf-
ficiently high density. For T ∗ = 1 we need a reduced den-
sity ρ∗ � (1/2)3/2 = 0.35. The maximum reduced density
allowed for our system is

√
2 = 1.41 for the close packed

configuration of the hard cores. The small attraction be-
tween the particles will be responsible for a shift at lower
packing fractions, η = πρσ3/6, of the melting value for
pure hard-sphere (which in the classical limit is approxi-
mately 0.54).

In our PIMC we had to choose a discretization time-
step, τ∗ = β∗/nτ , for the imaginary time extending from
tε = 0 to tε = β∗. We then chose nτ = 100 time-
slices [3]. The “worm” algorithm uses a menu of 9 different
moves: advance, recede, insert, remove, open, close, swap,
wiggle, and displace. Labeling each of these moves with
q = 1, 2, . . . , 9 respectively, a single random attempt of
any one of them with probability Gq = gq/

∑9
q=1 gq con-

stitutes a MC step. In our simulations we always chose
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Table 1. Reduced properties of the simulated system with Δ = 0.5 at λ∗ = 1, V = 100σ3 and different μ∗. For the simulation
at T ∗ = 0.5, μ∗ = 80 (stable) we considered the first 20 000 blocks as equilibration time and they were therefore discarded from
the averaging. In all the other cases the equilibration time was taken equal to 1000 blocks, i.e. the ones necessary to bring the
system from the empty box to the equilibrium number of particles.

T ∗ μ∗ etot/ε ekin/ε epot/ε pσ3/ε 〈N〉 ρσ3 ρs/ρ
1.0 50 (stable) 12.81(6) 17.70(7) –1.889(6) 3.33(2) 33.92(7) 0.3392(7) 1.05(8)
1.0 80 (stable) 19.20(7) 21.94(8) –2.734(8) 6.20(3) 42.41(8) 0.4241(8) 1.1(1)
1.0 100 (stable) 24.12(6) 27.46(7) –3.335(7) 8.75(3) 47.79(6) 0.4779(6) 0.03(1)
0.5 80 (stable) 17.029(8) 20.325(8) –3.297(3) 6.504(3) 48 0.48 0.013(4)
0.4 80 (metastable) 13.64(4) 17.09(5) –3.446(5) 5.72(2) 50.19(5) 0.5019(5) 1.2(1)
0.4 90 (metastable) 15.23(4) 18.98(5) –3.744(6) 6.73(2) 53.16(5) 0.5316(5) 1.05(8)

gq = 1 for q = 1, 2, . . . , 7, 9, and g8 = 10. For each move,
except the displace one, a maximum number of time-slices
involved, m, is also defined [11] to control their acceptance
ratios. We always chose mq = 5 for all q. For the displace
move we chose a displacement of the path of the order of
V 1/3/1000. We always chose the C parameter defined in
reference [11] equal to 0.1. This value ensured an accep-
tance ratio for the Z-sector [11] lower but close to 1/2 even
if in the simulations converging towards the solid state this
increased passed 1/2.

Our simulations were 5×104 blocks long with one block
made by 100 steps where we did not accumulate the av-
erages and by 100 steps where we did. This sets the sim-
ulation (experiment) time.

We studied the model with Δ = 0.5 and λ∗ = 1 at
T ∗ = 1, V = 100σ3, and μ∗ = 50, 80, 100. Starting from
the empty box we reached a stable superfluid for μ∗ =
50 (stable), 80 (stable) and a stable normal solid for μ∗ =
100 (stable). Then we lowered the temperature at T ∗ = 0.5
and we studied the model with μ∗ = 80. Now quenching
from the empty box we reached a metastable superfluid
at μ∗ = 80 (metastable) for the first 20 000 blocks which
later converged towards its stable normal solid state: μ∗ =
80 (stable). We then quenched from the empty box at a
slightly lower temperature T ∗ = 0.4 keeping the chemical
potential at μ∗ = 80 (metastable) (which resulted in a
slightly higher density respect to the case at the higher
temperature T ∗ = 0.5) and we observed that the system,
instead of entering the stable solid phase, stayed, for the
whole length of our numerical experiment, in a metastable
supercooled superfluid state.

In Table 1 we report some properties of the simulated
system such as: the total energy per particle etot, the ki-
netic energy per particle ekin, the potential energy per par-
ticle epot, the pressure p, the average number of particles
〈N〉, the density ρ = 〈N〉/V , and the superfluid fraction
ρs/ρ, as calculated according to reference [3]. All the pre-
sented simulation were well converged and the correlation
simulation time kO was never bigger than 500 blocks in
any simulation for any property O. The statistical error
was as usual calculated as

√
σ2(O)kO/Ns, where σ2(O) is

the estimator of the variance of the random walk and Ns

the number of MC steps.
In Figure 2 we show the static structure factor of

the first five systems. This clearly shows how the T ∗ =
0.5, μ∗ = 80 (stable) case is a solid state (the structure
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T*=0.5,μ*=80[stable]

T*=0.4,μ*=80[metastable]

Fig. 2. Static structure factor Fk(0) = S(k) at λ∗ = 1 and
T ∗ = 1, μ∗ = 50 (stable), 80 (stable), 100 (stable) and T ∗ =
1/2, μ∗ = 80 (stable), 80 (metastable). On the ordinates axis
we use a logarithmic scale.

factor peak is between 6 and 7) whereas the T ∗ = 0.4, μ∗ =
80 (metastable) one is a fluid state (the structure factor
peak is here between 1.6 and 1.8). Note that in all cases
the simulation was 5×104 blocks long and the acceptance
ratio of the Z-sector comparable. The difference between
the two cases immediately also appears by looking at the
evolution of the superfluid fraction during the progress of
the simulations, as shown in Figure 4. We clearly see how
the T ∗ = 0.5, μ∗ = 80 (stable) case has a transition from
a superfluid state, before block 20 000, to a normal solid,
after. The behavior of Fk(t) as a function of the imaginary
time for some chosen reciprocal wave-numbers around the
first peak of the correspondent static structure factor for
the system with T ∗ = 0.4 and μ∗ = 80, which is a pre-
cursor of a superfluid glass, a superglass [5,6,19], is such
that we observe exponential decays going below 10−2 for
tε > 0.6. Whereas for the systems in the solid state at
T ∗ = 1, μ∗ = 100 (stable) and T ∗ = 0.5, μ∗ = 80 (stable)
we observe an almost constant value for Fk(t) at the
wave-number of the first peak of the correspondent static
structure factor and exponentially decaying the other
wave-numbers.

In Figure 3 we show the (xi(t), yi(t)) particles posi-
tions at all time-slices at the end of the simulation for
the cases T ∗ = 0.5, μ∗ = 80 (stable) and T ∗ = 0.4, μ∗ =
80 (metastable), respectively.
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Fig. 3. The (xi(t), yi(t)) particles positions at all time-
slices at the end of the simulation with: λ∗ = 1, T ∗ =
0.5, μ∗ = 80 (stable) (left panel) and λ∗ = 1, T ∗ = 0.4, μ∗ =
80 (metastable) (right panel).
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Fig. 4. Superfluid fraction at each PIMC block during the
simulation at λ∗ = 1 and T ∗ = 0.5, μ∗ = 80 (stable) and
T ∗ = 0.4, μ∗ = 80 (metastable).

Regarding the size effects we can say that the solid
state we observed has a triclinic lattice structure with a
unit cell with base vectors a = (0, 0, a), b = (a, 0, a/2), c =
(0, a, a/2) accommodating approximately 48 particles. At
T ∗ = 0.4, a chemical potential of μ∗ = 80 is sufficient to
reach approximately 50 particles which could be adjusted
in a different unit cell with the same crystal structure.
Thus we think that the size effects should not be consid-
ered as responsible for the observed metastability.

In order to get closer to an arrested metastable state
we restarted from the the equilibrated supercooled su-
perfluid configuration of T ∗ = 0.4, μ∗ = 80 (metastable)
and increased μ∗ by 10. This allowed us to reach another
metastable supercooled superfluid state closer to an ar-
rested state where the Fk(t), for the k around the first
peak of the static structure factor at 2, shows an initial
exponential decay followed by a plateau. This is clearly
shown in Figure 5 taken at the end of the simulation and
is in accord with the MCT predictions. In order to ob-
serve the plateau it is essential the restarting or aging
procedure.

In conclusion, we proved, for the idealized model of
spinless square well bosons, that superfluidity is able to
sustain metastability at low temperature and high density.
In order to define whether we are on a metastable state
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Fig. 5. The behavior of Fk(t) as a function of the imagi-
nary time for various values of k around the first peak of
the structure factor. We used λ∗ = 1, T ∗ = 0.4, and μ∗ =
90 (metastable). The dashed lines are the approximate ideal
gas results. On the ordinates axis we use a logarithmic scale.
For kσ = 5.90 also the statistical errors are shown.

we need to fix a simulation time interval much longer than
the correlation simulation time. We were able to maintain
the system in a metastable supercooled superfluid state
for a rather long simulation time. The metastable state
may not be unique and there may be many of those for a
given set of thermodynamic conditions (e.g. μ, V, T in the
grand canonical ensemble) all different from one another
depending from the kind of quench. The real (diffusive)
dynamical (imaginary) time of the physical system can be
used to define the insurgence of an arrested glassy state
through the aging procedure, even if it is limited to the
interval [0, β/2].

We should mention here that the simulation time for
a classical molecular dynamic and for a MC numerical
experiment have profoundly different meanings. The first
one can be mapped into the real dynamical time of the
classical physical system whereas the second one has noth-
ing to do with it but is merely the number of stochas-
tic moves made to sample the configuration space of the
system within the Metropolis algorithm. In the quantum
regime one has at his disposal only simulations of the MC
type but, as we showed, the simulation time can give an
indication of metastability. Whereas the imaginary time
real dynamics of the system tells us if we are close to an
arrested glassy state.

We are presently implementing a better hard-core
propagator [20] to substitute to the primitive approxima-
tion which would allow us to use fewer time-slices.
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