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Abstract. We study, through the diffusion Monte Carlo method, a spin one-half fermion fluid, in the three
dimensional Euclidean space, at zero temperature. The point particles, immersed in a uniform “neutral-
izing” background, interact with a pair-potential which can be continuously changed from zero to the
Coulomb potential depending on a parameter μ. We determine the radial distribution functions of the
system for various values of density, μ, and polarization. We discuss about the importance, in a computer
experiment, of the choice of suitable estimators to measure a physical quantity. The radial distribution
function is determined through the usual histrogram estimator and through an estimator determined via
the use of the Hellmann and Feynman theorem. In a diffusion Monte Carlo simulation the latter route
introduces a new bias to the measure of the radial distribution function due to the choice of the auxiliary
function. This bias is independent from the usual one due to the choice of the trial wavefunction. A brief
account of the results from this study were presented in a recent communication [R. Fantoni, Solid State
Commun. 159, 106 (2013)].

1 Introduction

The Jellium model is a system of pointwise electrons of
charge e and number density n in the three dimensional
Euclidean space filled with a uniform neutralizing back-
ground of charge density −en. The zero temperature,
ground-sate, properties of the statistical mechanical sys-
tem thus depends just on the electronic density n or the
Wigner-Seitz radius rs = (3/4πn)1/3/a0 where a0 is Bohr
radius. The model can be used for example as a first
approximation to describe free electrons in metallic ele-
ments [1] (2 � rs � 4) or a white dwarf [2] (rs � 0.01).

When an impurity of charge q is added to the system,
the screening cloud of electrons will experience the Friedel
oscillations. In the Thomas-Fermi description of the static
screening an electric potential qvH(r) (the Hartree po-
tential) is created by the impurity and by the redistri-
bution of the electronic charge n(r) − n. It obeys the
Poisson equation qe∇2vH(r) = 4πe[−qδ(r) − en(r) + en]
and the equilibrium condition on the electrochemical po-
tential, μc(n(r)) + qevH(r) = constant. An analytic solu-
tion can be obtained for |q| � 1, when we find n(r)−n �
−qevH(r)∂n/∂μc by expansion of μ around the homoge-
neous state. Assuming ∂n/∂μc is positive and with the
definition ks =

√
4πe2∂n/∂μc, the Poisson equation yields

vH(r) =
e−ksr

r
. (1)
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It is clear from this result that the quantity 1/ks measures
the distance over which the self consistent potential asso-
ciated with the impurity penetrates into the electron gas.
Thus, 1/ks has the meaning of a screening length. The
Thomas-Fermi value of the screening length is obtained
by replacing the thermodynamic quantity ∂n/∂μc by its
value for non-interacting fermions, using for μc the Fermi
energy. Clearly we have that vH(r) → 1/r as 1/ks → ∞
and vH(r) → 0 as 1/ks → 0. Also vH is short ranged.

It is important to study the ground-state properties
of a model of point fermions of spin one-half interacting
with a bare pair-potential vμ(r) which can be continuously
changed from zero (μ → 0, ideal gas) to the Coulomb po-
tential (μ → ∞, Jellium model) depending on a parame-
ter μ. We chose the following functional form:

vμ(r) =
erf(μr)

r
. (2)

Still the fluid is immersed in a static uniform background
of continuously distributed point particles which interact
with the particles of the fluid with the same pair-potential
but of opposite sign.

A major challenge in the Kohn-Sham scheme of den-
sity functional theory is to devise approximations to the
exchange-correlation functional that accurately describes
near-degeneracy or long-range correlation effects such as
van der Waals forces. Among recent progresses to circum-
vent this problem, we mention “range-separated” den-
sity functional schemes which combine the Kohn-Sham
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formalism with either random-phase approximation [3]
or multideterminantal approaches [4]. Such schemes re-
quire a local density functional for particles interacting
via modified potentials defined in terms of a suitable pa-
rameter μ, which either softens the core or suppresses the
long-range tail. Further insight into electronic correlations
in molecules and materials can be gained through the anal-
ysis of the on-top pair correlation function [5].

Within quantum Monte Carlo, the diffusion Monte
Carlo is the method of choice for the calculation of
ground-state properties of appropriate reference homoge-
neous systems (the path integral method [6] can be used
to extend the study to non-zero temperatures degenerate
systems [7]), the most relevant example being the corre-
lation energy of the electron gas obtained by Ceperley
and Alder back in 1980 [8]. This is even more so in the
present days, since better wavefunctions and optimization
methods have been developed, better schemes to minimize
finite-size effect have been devised, and vastly improved
computational facilities are available.

Recently, Zecca et al. [9] have provided a local den-
sity functional for short-range pair potentials v(r) =
erfc(μr)/r, whereas Paziani et al. [10] have developed a
local spin density functional for the softened-core, long
range case, v(r) = erf(μr)/r.

It is the purpose of this work to build on previous
work [9,10] and provide the radial distribution function
(RDF), most notably the on-top value, i.e. its value at
contact, at a zero radial distance, for the pair potential
of reference [10], given in equation (2). A brief account of
the results from this study has been presented in a recent
communication [11]. Aim of the present work is to give a
complete and detailed account of the calculations that has
been carried on for such a study.

We performed fixed-nodes diffusion Monte Carlo sim-
ulations [12], where we used modern techniques [13] to
optimize Slater-Jastrow wavefunctions with backflow and
three-body correlations [14] and Hellmann and Feynman
(HFM) measures [15] to calculate the RDF, particu-
larly the on-top value, which suffers from poor statistical
sampling in its conventional histogram implementation.
Twist-averaged boundary conditions [16] and RPA-based
corrections [17] to minimize finite-size effects were not
found essential for the RDF calculation.

For the fully polarized and unpolarized fluid, we ex-
plored a range of densities and of the parameter μ. This
required simulating several different systems. We also
needed to evaluate and extrapolate out, for representa-
tive cases, time-step errors, population control bias, and
size effects. We plan to explore intermediate polarizations
in a future work.

In the study, we use two kinds of Jastrow-correlation-
factors, one better for the near-Jellium systems and one
better for the near-ideal systems.

An important component of a computer experiment of
a system of many particles, a fluid, is the determination of
suitable estimators to measure, through a statistical aver-
age, a given physical quantity, an observable. Whereas the
average from different estimators must give the same re-

sult, the variance, the square of the statistical error, can be
different for different estimators. We compare the measure
of the histogram estimator for the RDF with a particular
HFM one.

In ground state Monte Carlo simulations [18,19], un-
like classical Monte Carlo simulations [20–22] and path
integral Monte Carlo simulations [6], one has to resort
to the use of a trial wavefunction [18], Ψ . While this is
not a source of error, bias, in diffusion Monte Carlo sim-
ulation [19] of a system of bosons, it is for a system of
Fermions, due to the sign problem [23]. Another source
of bias inevitably present in all three experiments is the
finite size error.

In a ground state Monte Carlo simulation, the energy
has the zero-variance principle [24]: as the trial wavefunc-
tion approaches the exact ground state, the statistical er-
ror vanishes. In a diffusion Monte Carlo simulation of a
system of bosons the local energy of the trial wavefunction,

EL(R) = [HΨ(R)]/Ψ(R),

where R denotes a configuration of the system of parti-
cles and H is the Hamiltonian, which we will here assume
to be real, is an unbiased estimator for the ground state.
For fermions the ground state energy measurement is bi-
ased by the sign problem. For observables O which do not
commute with the Hamiltonian the local estimator

OL(R) = [OΨ(R)]/Ψ(R),

is inevitably biased by the choice of the trial wavefunction.
A way to remedy to this bias can be the use of the forward
walking method [25,26] or the reptation quantum Monte
Carlo method [27], to reach pure estimates. Otherwise this
bias can be made of leading order δ2 with δ = φ0 − Ψ ,
where φ0 is the ground state wavefunction, introducing the
extrapolated measure O

ext
= 2〈OL〉f − 〈OL〉fvmc , where

the first statistical average, the mixed measure, is over the
diffusion Monte Carlo (DMC) stationary probability dis-
tribution f and the second, the variational measure, over
the variational Monte Carlo (VMC) probability distribu-
tion fvmc, which can also be obtained as the stationary
probability distribution of a DMC without branching [28].

One may follow different routes to determine estima-
tors as the direct microscopic one, the virial route through
the use of the virial theorem, or the thermodynamic route
through the use of thermodynamic identities. This aspect
of finding out different ways of calculating quantum prop-
erties in some ways resembles experimental physics. The
theoretical concept may be perfectly well defined but it
is up to the ingenuity of the experimentalist to find the
best way of doing the measurement. Even what is meant
by “best” is subject to debate. In an unbiased experiment
the different routes to the same observable must give the
same average.

In this work, we propose to use the Hellmann and
Feynman theorem as a direct route for the determination
of estimators in a diffusion Monte Carlo simulation. Some
attempts in this direction have been tried before [29,30].
The novelty of our approach is a different definition of the
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correction to the variational measure, necessary in the dif-
fusion experiment, respect to reference [29] and the fact
that the bias stemming from the sign problem does not
exhaust all the bias due to the choice of the trial wave-
function, respect to reference [30].

The work is organized as follows: in Section 2, we intro-
duce the fluid model; in Section 3, we describe the Ewald
sums technique to treat the long range pair-potential; in
Section 4, we describe the fixed-nodes diffusion Monte
Carlo (DMC) method; in Section 5, we describe several
different ways to evaluate expectation values in a DMC
calculation; in Section 6, we describe the choice of the
trial wavefunction; in Section 7, we define the RDF and
describe some of its exact properties; the numerical results
for the RDF are presented in Section 8; Section 9 is for
final remarks.

2 The model

The Jellium is an assembly of N electrons of charge e
moving in a neutralizing background. The average particle
number density is n = N/Ω, where Ω is the volume of
the fluid. In the volume Ω there is a uniform neutralizing
background with a charge density ρb = −en. So that the
total charge of the system is zero.

In this paper lengths will be given in units of
a = (4πn/3)−1/3. Energies will be given in Rydbergs
�

2/(2ma2
0), where m is the electron mass and a0 =

�
2/(me2) is the Bohr radius.

In these units the Hamiltonian of Jellium is

H = − 1
r2
s

N∑
i=1

∇∇∇2
ri

+ V (R), (3)

V =
1
rs

⎛
⎝2

∑
i<j

1
|ri − rj | +

N∑
i=1

r2
i + v0

⎞
⎠, (4)

where R = (r1, r2, . . . , rN ) with ri the coordinate of the
ith electron, rs = a/a0, and v0 a constant containing the
self energy of the background.

The kinetic energy scales as 1/r2
s and the poten-

tial energy (particle-particle, particle-background, and
background-background interaction) scales as 1/rs, so for
small rs (high electronic densities), the kinetic energy
dominates and the electrons behave like an ideal gas. In
the limit of large rs, the potential energy dominates and
the electrons crystallize into a Wigner crystal [8,31]. No
liquid phase is realizable within this model as the pair-
potential has no attractive parts even though a supercon-
ducting state [32] may still be possible (see Chapt. 8.9 of
Ref. [33]).

Modified long range pair-potential

The fluid model studied in this work is obtained modify-
ing the Jellium by replacing the 1/r Coulomb potential

between the electrons with the following long range bare
pair-potential [10]

vμ(r) =
erf(μr)

r
, (5)

whose Fourier transform is

ṽμ(k) =
4π

k2
e
− k2

4μ2 . (6)

When μ → ∞, we recover the standard Jellium model; in
the opposite limit μ → 0, we recover the non-interacting
electron gas. Notice that vμ is a long range pair-potential
with a penetrable core, vμ(0) = 2μ/

√
π. So μ controls the

penetrability of two particles. For this kind of system it is
lacking a detailed study of the RDF. In this work, we will
only be concerned about the fluid phase.

3 Ewald sums

Periodic boundary conditions are necessary for extrapo-
lating results of the finite system to the thermodynamic
limit. Suppose the bare pair-potential, in infinite space, is
v(r),

v(r) =
∫

dk
(2π)3

e−ik·rṽ(k), ṽ(k) =
∫

dr eik·rv(r). (7)

The best pair-potential of the finite system is given by the
image potential

vI(r) =
∑
L

v(|r + L|) − ṽ(0)/Ω (8)

where the L sum is over the Bravais lattice of the simula-
tion cell L = (mxL, myL, mzL), where mx, my, mz range
over all positive and negative integers and Ω = L3. We
have also added a uniform background of the same den-
sity but opposite charge. Converting this to k-space and
using the Poisson sum formula we get

vI(r) =
1
Ω

′∑
k

ṽ(k)e−ik·r, (9)

where the prime indicates that we omit the k = 0 term;
it cancels out with the background. The k sum is over
reciprocal lattice vectors of the simulation box

kn = (2πnx/L, 2πny/L, 2πnz/L),

where nx, ny, nz range over all positive and negative
integers.

Because both sums, equations (8) and (9), are so
poorly convergent [21] we follow the scheme put forward
by Natoli and Ceperley [34] for approximating the image
potential by a sum in k-space and a sum in r-space,

va(r) =
∑
L

vs(|r + L|) +
∑

|k|≤kc

vl(k)eik·r − ṽ(0)/Ω,

(10)
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where vs(r) is chosen to vanish smoothly as r ap-
proaches rc, where rc is less than half of the distance across
the simulation box in any direction. If either rc or kc go to
infinity then va → vI . Natoli and Ceperley show that in
order to minimize the error in the potential, it is appropri-
ate to minimize χ2 =

∫
Ω[vI(r)− va(r)]2 dr/Ω, and choose

for vs(r) an expansion in a fixed number of radial func-
tions. This same technique has also been applied to treat
the Jastrow-correlation-factor described in Section 6.1.

Now let us work with N particles of charge e in a
periodic box and let us compute the total potential energy
of the unit cell. Particles i and j are assumed to interact
with a potential e2v(rij) = e2v(|ri − rj |). The potential
energy for the N particle system is

V =
∑
i<j

e2vI(rij) +
∑

i

e2vM , (11)

where vM = 1
2 limr→0[vI(r) − v(r)] is the interaction of a

particle with its own images; it is a Madelung constant [35]
for particle i interacting with the perfect lattice of the
simulation cell. If this term were not present, particle i
would only see N − 1 particles in the surrounding cells
instead of N .

4 The fixed-nodes diffusion Monte Carlo
(DMC) method

Consider the Schrödinger equation for the many-body
wavefunction, φ(R, t) (the wavefunction can be assumed
to be real, since both the real and imaginary parts of
the wavefunction separately satisfy the Schrödinger equa-
tion), in imaginary time, with a constant shift ET in
the zero of the energy. This is a diffusion equation in
a 3N -dimensional space [36]. If ET is adjusted to be
the ground-state energy, E0, the asymptotic solution is
a steady state solution, corresponding to the ground-state
eigenfunction φ0(R) (provided φ(R, 0) is not orthogonal
to φ0).

Solving this equation by a random-walk process with
branching is inefficient, because the branching rate, which
is proportional to the total potential V (R), can diverge to
+∞. This leads to large fluctuations in the weights of the
diffusers and to slow convergence when calculating aver-
ages. However, the fluctuations, and hence the statistical
uncertainties, can be greatly reduced [19] by the technique
of importance sampling [37].

One simply multiplies the Schrödinger equation by a
known trial wavefunction Ψ(R) that approximate the un-
known ground-state wavefunction, and rewrites it in terms
of a new probability distribution

f(R, t) = φ(R, t)Ψ(R), (12)

whose normalization is given in equation (A.1). This leads
to the following diffusion equation:

−∂f(R, t)
∂t

= −λ∇∇∇2f(R, t) + [EL(R) − ET ]f(R, t)

+ λ∇∇∇[f(R, t)F(R)]. (13)

Here λ = �
2/(2m), t is the imaginary time measured in

units of �, EL(R) = [HΨ(R)]/Ψ(R) is the local energy of
the trial wavefunction, and

F(R) = ∇∇∇ ln Ψ2(R). (14)

The three terms on the right hand side of equation (13)
correspond, from left to right, to diffusion, branching, and
drifting, respectively.

At sufficiently long times the solution to equa-
tion (13) is

f(R, t) ≈ N0Ψ(R)φ0(R) exp[−(E0 − ET )t], (15)

where N0 =
∫

φ0(R)φ(R, 0) dR. If ET is adjusted to
be E0, the asymptotic solution is a stationary solution
and the average 〈EL(R)〉f of the local energy over the
stationary distribution gives the ground-state energy E0.
If we set the branching to zero EL(R) = ET then
this average would be equal to the expectation value∫

Ψ(R)HΨ(R) dR, since the stationary solution to equa-
tion (13) would then be f = fvmc = Ψ2. In other words,
without branching we would obtain the variational en-
ergy of Ψ , rather than E0, as in a variational Monte Carlo
(VMC) calculation.

The time evolution of f(R, t) is given by:

f(R
′
, t + τ) =

∫
dRG(R

′
,R; τ)f(R, t), (16)

where the Green’s function

G(R
′
,R; τ) = Ψ(R′)〈R′| exp[−τ(H − ET )]|R〉Ψ−1(R)

is a transition probability for moving the set of coordinates
from R to R

′
in a time τ . Thus, G is a solution of the

same differential equation (Eq. (13)), but with the initial
condition G(R

′
,R; 0) = δ(R

′ − R). For short times τ an
approximate solution for G is

G(R
′
,R; τ) = (4πλτ)−3N/2e−|R′−R−λτF(R)|2/4λτ

× e−τ{[EL(R)+EL(R′)]/2−ET } + O(τ2).
(17)

To compute the ground-state energy and other expecta-
tion values, the N -particle distribution function f(R, t)
is represented, in diffusion Monte Carlo, by an aver-
age over a time series of generations of walkers each of
which consists of a fixed number of nw walkers. A walker
is a pair (Rα, ωα), α = 1, 2, . . . , nw, with Rα a 3N -
dimensional particle configuration with statistical weight
ωα. At time t, the walkers represent a random realization
of the N -particle distribution, f(R, t) =

∑nw

α=1 ωt
αδ(R −

Rt
α). The ensemble is initialized with a VMC sample from

f(R, 0) = Ψ2(R), with ω0
α = 1/nw for all α. Note that if

the trial wavefunction were the exact ground-state then
there would be no branching and it would be sufficient
nw = 1. A given walker (Rt, ωt) is advanced in time (dif-
fusion and drift) as:

Rt+τ = Rt + χ + λτ∇∇∇ ln Ψ2(Rt)
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where χ is a normally distributed random 3N -dimensional
vector with variance 2λτ and zero mean [38]. In order
to satisfy detailed balance we accept the move with a
probability

A(R,R′; τ) = min[1, W (R,R′)],

where

W (R,R′) =
[
G(R,R′; τ)Ψ2(R′)

]
/
[
G(R′,R; τ)Ψ2(R)

]
.

This step would be unnecessary if G were the exact
Green’s function, since W would be unity. Finally, the
weight ωt

α is replaced by ωt+τ
α = ωt

αΔωt
α (branching), with

Δωt
α = exp

{−τ [(EL(Rt
α) + EL(Rt+τ

α ))/2 − ET ]
}

.

However, for the diffusion interpretation to be valid, f
must always be positive, since it is a probability distri-
bution. But we know that the many-fermions wavefunc-
tion φ(R, t), being antisymmetric under exchange of a pair
of particles of the parallel spins, must have nodes, i.e.
points R where it vanishes. In the fixed-nodes approxi-
mation one restricts the diffusion process to walkers that
do not change the sign of the trial wavefunction. One can
easily demonstrate that the resulting energy, 〈EL(R)〉f ,
will be an upper bound to the exact ground-state energy;
the best possible upper bound with the given boundary
condition [23].

A detailed description of the algorithm used for the
DMC calculation can be found in reference [28].

5 Expectation values in DMC

In a DMC calculation there are various different possibili-
ties to measure the expectation value of a physical observ-
able, as for example the RDF. If 〈O〉f is the measure and
〈. . .〉f the statistical average over the probability distribu-
tion f we will, in the following, use the word estimator
to indicate the function O itself, unlike the more common
use of the word to indicate the usual Monte Carlo esti-
mator

∑N
i=1 Oi/N of the average, where {Oi} is the set

obtained evaluating O over a finite number N of points
distributed according to f . Whereas the average from dif-
ferent estimators must give the same result, the variance,
the square of the statistical error, can be different for dif-
ferent estimators.

5.1 The local estimator and the extrapolated measure

To obtain ground-state expectation values of quantities O
that do not commute with the Hamiltonian we introduce
the local estimator OL(R) = [OΨ(R)]/Ψ(R) and then
compute the average over the DMC walk, the so-called
mixed measure,

O
mix

= 〈OL(R)〉f =
∫

φ0(R)OΨ(R) dR/

∫
φ0(R)Ψ(R)dR.

This is inevitably biased by the choice of the trial wave-
function. A way to remedy to this bias is the use of the
forward walking method [25,26] or the reptation quantum
Monte Carlo method [27] to reach pure estimates. Oth-
erwise, this bias can be made of leading order δ2, with
δ = φ0 − Ψ , introducing the extrapolated measure

O
ext

= 2O
mix − O

var
, (18)

where O
var

= 〈OL〉fvmc is the variational measure. If
the mixed measure equals the variational measure then
the trial wavefunction has maximum overlap with the
ground-state.

5.2 The Hellmann and Feynman measure

Toulouse et al. [15] and Assaraf and Caffarel [29] observed
that the zero-variance property of the energy [24] can be
extended to an arbitrary observable, O, by expressing it
as an energy derivative through the use of the Hellmann-
Feynman theorem.

In a DMC calculation the Hellmann-Feynman theo-
rem takes a form different from the one in a VMC cal-
culation. Namely we start with the eigenvalue expression
(Hλ − Eλ)Ψλ = 0 for the ground-state of the perturbed
Hamiltonian Hλ = H + λO, take the derivative with re-
spect to λ, multiply on the right by the ground-state at
λ = 0, φ0, and integrate over the particle coordinates to
get∫

dRφ0(Hλ − Eλ)
∂Ψλ

∂λ
=
∫

dRφ0

(
∂Eλ

∂λ
− ∂Hλ

∂λ

)
Ψλ.

(19)
Then, we notice that due to the hermiticity of the
Hamiltonian, at λ = 0 the left hand side vanishes, so that
we get [11] ∫

dRφ0OΨλ∫
dRφ0Ψλ

∣∣∣∣
λ=0

=
∂Eλ

∂λ

∣∣∣∣
λ=0

. (20)

This relation holds only in the λ → 0 limit unlike the
more common form [39], which holds for any λ. Also it
resembles equation (3) of reference [30].

Given

Eλ =
∫

dRφ0(R)HλΨλ(R)/
∫

dRφ0(R)Ψλ(R),

the “Hellmann and Feynman” (HFM) measure in a DMC
calculation is

O
HFM

=
dEλ

dλ

∣∣∣∣
λ=0

≈ 〈OL(R)〉f

+〈ΔOα
L(R)〉f + 〈ΔOβ

L(R)〉f . (21)

The α correction is [11]

ΔOα
L(R) =

[
HΨ ′

Ψ ′ − EL(R)
]

Ψ ′(R)
Ψ(R)

. (22)
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This expression coincides with equation (18) of refer-
ence [15]. In a VMC calculation this term, usually, does
not contribute to the average, with respect to fvmc = Ψ2,
due to the hermiticity of the Hamiltonian. This is of course
not true in a DMC calculation. We will then define a
Hellmann and Feynman variational (HFMv) estimator as
OHFMv = OL(R) + ΔOα

L(R). The β correction is [11]

ΔOβ
L(R) = [EL(R) − E0]

Ψ ′(R)
Ψ(R)

, (23)

where E0 = Eλ=0. Which differs from equation (19) of
reference [15] by a factor of one half. This term is neces-
sary in a DMC calculation not to bias the measure. The
extrapolated Hellmann and Feynman measure will then be

O
HFM-ext

= 2O
HFM − 〈OHFMv〉fvmc . (24)

Both corrections α and β to the local estimator depend on
the auxiliary function, Ψ ′ = ∂Ψλ/∂λ|λ=0. Of course if we
had chosen Ψλ=0, on the left hand side of equation (21),
as the exact ground state wavefunction, φ0, instead of the
trial wavefunction, then both corrections would have van-
ished. When the trial wavefunction is sufficiently close to
the exact ground state function a good approximation to
the auxiliary function can be obtained from first order
perturbation theory for λ � 1. So, the Hellmann and
Feynman measure is affected by the new source of bias
due to the choice of the auxiliary function independent
from the bias due to the choice of the trial wavefunction.

It is convenient to rewrite equations (22) and (23) in
terms of the logarithmic derivative Q(R) = Ψ ′(R)/Ψ(R)
as follows:

ΔOα
L(R) = − 1

r2
s

N∑
k=1

[∇∇∇2
rk

Q(R) + 2vk(R) · ∇∇∇rk
Q(R)

]
,

(25)

ΔOβ
L(R) = [EL(R) − E]Q(R), (26)

where vk(R) = ∇∇∇rk
ln Ψ(R) is the drift velocity of the

trial wavefunction. For each observable a specific form of
Q has to be chosen.

6 Trial wavefunction

We chose the trial wavefunction of the Bijl-Dingle-
Jastrow [40–42] or product form

Ψ(R) ∝ D(R) exp

⎛
⎝−

∑
i<j

u(rij)

⎞
⎠ . (27)

The function D(R) is the exact wavefunction of the non-
interacting fermions (the Slater determinant) and serves
to give the trial wavefunction the desired antisymmetry

D(R) =
1√
N+!

det(ϕ+
n,m)

1√
N−!

det(ϕ−
n,m), (28)

where for the fluid phase ϕσ
n,m = eikn·rmδσm,σ/

√
Ω with

kn a reciprocal lattice vector of the simulation box such
that |kn| ≤ kσ

F , σ the z-component of the spin (±1/2),
rm the coordinates of particle m, and σm its spin z-
component. For the unpolarized fluid there are two sepa-
rate determinants for the spin-up and the spin-down states
because the Hamiltonian is spin independent. For the po-
larized fluid there is a single determinant. For the gen-
eral case of N+ spin-up particles the polarization will be
ζ = (N+ − N−)/N and the Fermi wave-vector for the
spin-up (spin-down) particles will be k±

F = (1 ± ζ)1/3kF

with kF = (3π2n)1/3 = (9π/4)1/3/(a0rs) the Fermi wave-
vector of the paramagnetic fluid. On the computer we fill
closed shells so that Nσ is always odd. We only store kn

for each pair (kn,−kn) and use sines and cosines instead
of exp(ikn · ri) and exp(−ikn · rj).

The second factor (the Jastrow factor) includes in
an approximate way the effects of particle correlations,
through the “Jastrow-correlation-factor”, u(r), which is
repulsive.

6.1 The Jastrow-correlation-factor

Neglecting the cross term between the Jastrow and the
Slater determinant in equation (A.6) (third term) and the
Madelung constant, the variational energy per particle can
be approximated as follows:

eV =
〈EL(R)〉f

N
=
∫

Ψ(R)HΨ(R) dR
N

≈ eF +
1

2Ω

′∑
k

[e2ṽμ(k) − 2λk2ũ(k)][S(k) − 1]

+
1

NΩ2

′∑
k,k′

λk · k′ũ(k)ũ(k′)〈ρk+k′ρ−kρ−k′〉f + . . . ,

(29)

where eF = (3/5)λ
∑

σ Nσ(kσ
F )2/N is the non-interacting

fermions energy per particle, ũ(k) is the Fourier trans-
form of the Jastrow-correlation-factor u(r), ṽμ(k) =
4π exp(−k2/4μ2)/k2 is the Fourier transform of the bare
pair-potential, S(k) is the static structure factor for a
given u(r) (see Sect. 7.3), ρk =

∑N
i=1 exp(ik · ri) is the

Fourier transform of the total number density ρ(r) =∑
i δ(r−ri), and the trailing dots stand for the additional

terms coming from the exclusion of the j = k term in the
last term of equation (A.6). Next, we make the random
phase approximation [43] and we keep only the terms with
k + k′ = 0 in the last term. This gives

eV ≈ eF +
1

2Ω

′∑
k

{ [
e2ṽμ(k) − 2λk2ũ(k)

]
× [S(k) − 1] − 2nλ[kũ(k)]2S(k)

}
+ . . . (30)
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In the limit k → 0, we have to cancel the Coulomb singu-
larity and we get

ũ2(k) = me2ṽμ(k)/(�2nk2)

� [
(4πe2/k2)/(�ωp)

]2
(where ωp =

√
4πne2/m is the plasmon frequency) or in

adimensional units

ũ(k) =
√

rs

3
4π

k2
, small k. (31)

This determines the correct behavior of ũ(k) as k → 0 or
the long range behavior of u(r)

u(r) =
√

rs

3
1
r
, large r. (32)

Now to construct the approximate Jastrow-correlation-
factor, we start from the expression

ε = eF +
1

2Ω

′∑
k

[e2ṽμ(k) −Aλk2ũ(k)][S(k) − 1], (33)

and use the following perturbation approximation, for how
S(k) depends on ũ(k) [44,45],

1
S(k)

=
1

Sx(k)
+ Bnũ(k), (34)

where A and B are constant to be determined and Sx(k)
the structure factor for the non-interacting fermions (see
Eq. (62)), which is Sx =

∑
σ Sx

σ,σ with

Sx
σ,σ(k) =

⎧⎨
⎩

nσ

n

yσ

2
(3 − y2

σ) yσ < 1
nσ

n
else

(35)

where nσ = Nσ/Ω and yσ = k/(2kσ
F ).

Minimizing ε with respect to u(k), we obtain [46]

Bnũ(k) = − 1
Sx(k)

+
[

1
Sx(k)

+
Bne2ṽμ(k)

λAk2

]1/2

. (36)

This form is optimal at both long and short distances but
not necessarily in between. In particular, for any value
of ζ, the small k behavior of ũ(k) is

√
2rs/3AB(4π/k2),

which means that

u(r) =

√
2rs

3AB
1
r
, large r. (37)

The large k behavior of ũ(k) is (rs/A)ṽμ(k)/k2, for any
value of ζ, which in r space translates into

du(r)
dr

∣∣∣∣
r=0

=

{
− rs

2A μ → ∞
0 μ finite.

(38)

In order to satisfy the cusp condition for particles of an-
tiparallel spins (any reasonable Jastrow-correlation-factor

has to obey to the cusp conditions (see Ref. [13], Sect. 4.F)
which prevent the local energy from diverging whenever
any two electrons (μ = ∞) come together) we need to
choose A = 1, then the correct behavior at large r (31)
is obtained fixing B = 21. We will call this Jastrow J1 in
the following.

It turns out that, at small μ, but not for the Coulomb
case, a better choice is given by [47]

2nũ(k) = − 1
Sx(k)

+

[(
1

Sx(k)

)2

+
2ne2ṽμ(k)

λk2

]1/2

, (39)

which still has the correct long (37) and short (38) range
behaviors. We will call this Jastrow J2 in the following.
This is expected since, differently from J1, J2 satisfies the
additional exact requirement limμ→0 u(r) = 0, as immedi-
ately follows from the definition (39). Then, as confirmed
by our results (see Sect. 8.5)), at small μ (and any rs),
the trial wavefunction is expected to be very close to the
stationary solution of the diffusion problem.

6.2 The backflow and three-body correlations

As shown in Appendix A, the trial wavefunction of equa-
tion (27) can be further improved by adding three-body
(3B) and backflow (BF) correlations [14,48] as follows:

Ψ(R) = D̃(R) exp

⎡
⎣−∑

i<j

ũ(rij) −
N∑

l=1

G(l) ·G(l)

⎤
⎦ .

(40)
Here

D̃(R) =
1√
N+!

det(ϕ̃+
n,m)

1√
N−!

det(ϕ̃−
n,m), (41)

with ϕ̃σ
n,m = eikn·xmδσm,σ/

√
Ω and xm quasi-particle co-

ordinates defined as:

xi = ri +
N∑

j �=i

η(rij)(ri − rj). (42)

The displacement of the quasi-particle coordinates xi from
the real coordinate ri incorporates effects of hydrody-
namic backflow [49], and changes the nodes of the trial
wavefunction. The backflow correlation function η(r), is
parametrized as [14]:

η(r) = λB
1 + sBr

rB + wBr + r4
, (43)

1 Note that the probability distribution in a variational cal-
culation is (from Eq. (27)) Ψ2(R) ∝ D2(R) exp[−2U(R)] with
U(R) =

∑
i<j u(rij). Then, if one formally writes D2(R) =

exp[−2W (R)], Ψ2 becomes the probability distribution for a
classical fluid with potential W + U at an inverse temperature
β = 2. Then one sees that with the choice B = 2, equation (34)
coincides with the well-known random phase approximation in
the theory of classical fluids (see Ref. [57] Sect. 6.5) where W
is the potential of the reference fluid and U the perturbation.
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Table 1. Optimized variational parameters of backflow and three-body correlation functions for N = 54 and ζ = 0 and various
combinations af rs and μ.

rs μ λB sB rB wB a b c
10 1/2 – – – – – – –
10 1 8.408d–4 1.658d+2 –1.383d–3 3.168 0.447 –0.212 1.036
10 2 7.189d–5 9.793d+2 9.478d–6 0.446 1.379d+1 –3.688 0.450
10 4 1.116d–4 6.522d+2 –2.553d–5 0.179 5.981d+1 –4.773 0.462
10 ∞ 0.781 –0.499 0.324 2.958 0.514 0.327 1.358
5 1/2 – – – – – – –
5 1 – – – – – – –
5 2 2.768d–2 –0.420 0.893 –0.673 1.322d+6 –9.003 0.408
5 4 0.331 –0.680 1.467 1.442 2.729d+1 –2.607 0.659
5 ∞ 0.161 –0.585 0.335 0.841 0.802 –7.310d–2 1.344
2 1/2 – – – – – – –
2 1 – – – – – – –
2 2 – – – – – – –
2 4 5.272d–2 –1.616 1.732 1.687d–2 804.135 –2.875 0.847
2 ∞ 5.018d–2 –1.221 0.393 0.681 1.655 –0.596 1.229
1 1/2 – – – – – – –
1 1 – – – – – – –
1 2 – – – – – – –
1 4 1.187d–2 –6.834 0.495 1.295 0.186 0.489 4.739
1 ∞ 2.1945d–2 –3.086 0.320 1.631 0.306 0.367 2.467

which has the long-range behavior ∼ 1/r3.
Three-body correlations are included through the vec-

tor functions

G(i) =
N∑

j �=i

ξ(rij)(ri − rj). (44)

We call ξ(r) the three-body correlation function which is
parametrized as [50]:

ξ(r) = a exp
{−[(r − b)c]2

}
. (45)

To cancel the two-body term arising from G(l) ·G(l), we
use ũ(r) = u(r) − 2ξ2(r)r2

The backflow and three-body correlation functions are
then chosen to decay to zero with a zero first derivative
at the edge of the simulation box.

6.3 Optimized parameters

Optimizing the trial wavefunction (see Ref. [13], Sect. 7)
is extremely important for a fixed-nodes DMC calculation
as, even if the Jastrow-correlation-factor is parameter free,
the backflow changes the nodes. We carefully studied how
the RDF depends on the quality of the trial wavefunction
choosing a simple Slater determinant (S) (Eq. (27) with-
out the Jastrow factor), a Slater-Jastrow (SJ) (Eq. (27)),
and a Slater-Jastrow with the backflow and three-body
corrections (SJ+ BF +3B) (Eq. (40)).

In Table 1, we report the optimized parameters for
the backflow and three-body correlation functions for a
system of N = 54 and ζ = 0 at various rs and μ. We
have used these values of the parameters in all subsequent
calculations, unrespective of the value of ζ.

In Figure 1, we show the optimized η and ξ for N = 54,
ζ = 0, rs = 10. The optimization of the 7 parameter de-
pendent trial wavefunction gives a backflow correlation η
ordered in μ but a three-body correlation ξ erratic in μ.
As one moves away from the Coulomb μ → ∞ case the
system of particles becomes less interacting and the rele-
vance of the backflow and three-body correlations dimin-
ishes. This is supported by the fact that at μ = 4, 2, 1, in
correspondence of the erratic behavior, the effect of the
three-body correlations on the expectation value of the
energy is irrelevant.

7 The radial distribution function (RDF)

The main purpose of the present work is to determine
the radial distribution function (RDF) of our fluid model
through the DMC calculation.

7.1 Definition of the radial distribution function

The spin-resolved RDF is defined as [51,52]:

gσ,σ′(r, r
′
) =

〈∑
i,j �=i δσ,σiδσ′,σj δ(r − ri)δ(r

′ − rj)
〉

nσ(r)nσ′ (r′)
,

(46)

nσ(r) =

〈
N∑

i=1

δσ,σiδ(r − ri)

〉
, (47)

where here, and in the following, 〈. . .〉 will denote the ex-
pectation value respect to the ground-state. Two exact
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Fig. 1. The optimized correlation functions η and ξ for N = 54, ζ = 0, and rs = 10 and different values of μ.

conditions follow immediately from the definition: (i) the
zero-moment sum rule∑

σ,σ′

∫
drdr′ nσ(r)nσ(r′)[gσ,σ′(r, r

′
) − 1] = −N, (48)

also known as the charge (monopole) sum rule in the
sequence of multipolar sum rules in the framework of
charged fluids [53], (ii) gσ,σ(r, r) = 0 due to the Pauli
exclusion principle.

For the homogeneous and isotropic fluid nσ(r) =
Nσ/Ω where Nσ is the number of particles of spin σ and
gσ,σ′ depends only on the distance r = |r − r

′ |, so that

gσ,σ′(r) =
1

4πr2

Ω

NσNσ′

〈∑
i,j �=i

δσ,σiδσ′,σj δ(r − rij)

〉
.

(49)
The total (spin-summed) radial distribution function
will be

g(r) =
1
n2

∑
σ,σ′

nσnσ′gσ,σ′(r)

=
(

1 + ζ

2

)2

g+,+(r) +
(

1 − ζ

2

)2

g−,−(r)

+
1 − ζ2

2
g+,−(r). (50)

7.2 From the structure to the thermodynamics

As it is well-known the knowledge of the RDF gives access
to the thermodynamic properties of the system. The mean
potential energy per particle can be directly obtained from
g(r) and the bare pair-potential vμ(r) as follows:

ep =
∑
σ,σ′

nσnσ′

2n

∫
dr e2vμ(r)[gσ,σ′ (r) − 1], (51)

where we have explicitly taken into account of the back-
ground contribution. Suppose that ep(rs) is known as a

function of the coupling strength rs. The virial theorem
for a system with Coulomb interactions (v∞(r) = 1/r)
gives N(2ek + ep) = 3PΩ with P = −d(Ne0)/dΩ the
pressure and e0 = ek + ep the mean total ground-state
energy per particle. We then find

ep(rs) = 2e0(rs) + rs
de0(rs)

drs
=

1
rs

d

drs
[r2

se0(rs)], (52)

which integrates to

e0(rs) = eF +
1
r2
s

∫ rs

0

dr′s r′sep(r′s). (53)

We can rewrite the ground-state energy per particle of the
ideal Fermi gas, in reduced units, as

eF =
(

9π

4

)2/3 3
10

φ5(ζ)
1
r2
s

, (54)

where φn(ζ) = (1−ζ)n/3+(1+ζ)n/3. And for the exchange
potential energy per particle in the Coulomb case

ex
p = −

(
2

3π5

)1/3 9π

8
φ4(ζ)

1
rs

, (55)

which follows from equation (51) and equations (59), (60).
The expression for finite μ can be found in reference [10]
(see their Eqs. (15), (16)).

7.3 Definition of the static structure factor

If we introduce the microscopic spin dependent number
density

ρσ(r) =
N∑

i=1

δσ,σiδ(r − ri), (56)

and its Fourier transform ρk,σ, then the spin-resolved
static structure factors are defined as:

Sσ,σ′(k) = 〈ρk,σρ−k,σ′〉/N,
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which, for the homogeneous and isotropic fluid, can be
rewritten as

Sσ,σ′(k) =
nσ

n
δσ,σ′ +

nσnσ′

n

∫
[gσ,σ′(r) − 1]

× e−ik·r dr +
nσnσ′

n
(2π)3δ(k). (57)

From now on we will ignore the delta function at k = 0.
The total (spin-summed) static structure factor is S =∑

σ,σ′ Sσ,σ′ . Due to the charge sum rule (48) we must have
limk→0 S(k) = 0. In Section 7.3.2 we will show that the
small k behavior of S(k) has to start from the term of
order k2.

7.3.1 Analytic expressions for the non-interacting fermions

Usually gσ,σ′ is conventionally divided into the (known)
exchange and the (unknown) correlation terms

gσ,σ′ = gx
σ,σ′ + gc

σ,σ′ , (58)

where the exchange term corresponds to the uniform sys-
tem of non-interacting fermions.

Radial distribution function

We, thus, have (from the definition of the RDF (46) and
using Slater determinants for the wavefunction)

gx
+,−(r) = 1, (59)

gx
σ,σ(r) = 1 −

[
3j1(kσ

F r)
kσ

F r

]2

, (60)

where j1(x) = [sin(x)−x cos(x)]/x2 is the spherical Bessel
function of the first kind and (kσ

F )3 = 6π2nσ is the Fermi
wave-number for particles of spin σ.

Static structure factor

Again we will have the splitting Sσ,σ′ = Sx
σ,σ′ + Sc

σ,σ′ into
the exchange and the correlation parts. So that for the
non-interacting fermions we get

Sx
+,−(k) = 0, (61)

Sx
σ,σ(k) =

nσ

n
− n2

σ

n
Θ(2kσ

F − k)

× 3π2

(kσ
F )3

(
1 − k

2kσ
F

)2(
2 +

k

2kσ
F

)

=
nσ

n

{
1 k > 2kσ

F

3
4

k
kσ

F
− 1

16

(
k

kσ
F

)3

k < 2kσ
F

, (62)

where Θ(x) is the Heaviside step function.

7.3.2 RDF sum rules

Both the behaviors of the RDF at small r and at large r
have to satisfy to general exact relations or sum rules.

Cusp conditions

When two electrons (μ = ∞) get closer and closer to-
gether, the behavior of gσ,σ′(r) is governed by the exact
cusp conditions [54–56]

d

dr
gσ,σ(r)

∣∣∣∣
r→0

= 0, (63)

d3

dr3
gσ,σ(r)

∣∣∣∣
r→0

=
3

2a0

d2

dr2
gσ,σ(r)

∣∣∣∣
r→0

, (64)

d

dr
g+,−(r)

∣∣∣∣
r→0

=
1
a0

g+,−(0), (65)

where in the adimensional units a0 → 1/rs. For finite μ, we
only have the condition gσ,σ(0) = 0 due to Pauli exclusion
principle.

The random phase approximation (RPA) and the long range
behavior of the RDF

Within the linear density response theory [57]2 one in-
troduces the space-time Fourier transform, χ(k, ω), of the
linear density response function. Which is related through
the fluctuation dissipation theorem,

S(k, ω) = −(2�/n)Θ(ω)Imχ(k, ω),

to the space-time Fourier transform, S(k, ω) (dynamic
structure factor), of the van Hove correlation function [58],
〈ρ(r, t)ρ(0, 0)〉/n, where

ρ(r, t) = exp(iHt/�)ρ(r) exp(−iHt/�).

In the random phase approximation (RPA) we have [59]

1
χRPA(k, ω)

=
1

χ0(k, ω)
− e2ṽμ(k), (66)

where χ0 is the response function of the non-interacting
Fermions (ideal Fermi gas), known as the Lindhard sus-
ceptibility [60]. This corresponds to taking the “proper po-
larizability” (the response to the Hartree potential) equal
to the response of the ideal Fermi gas [61]. The RPA static
structure factor is then recovered from the fluctuation dis-
sipation theorem as follows:

SRPA(k) = −�

n

∫ ∞

0

dω

π
ImχRPA(k, ω), (67)

2 Note that, unlike in the classical case, in quantum statis-
tical physics even the linear response to a static perturbation
requires the use of imaginary time correlation functions [53].
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where

ImχRPA =
Imχ0

(1 − e2ṽμReχ0)2 + (e2ṽμImχ0)2
. (68)

The small k behavior of the RPA structure factor is ex-
act [59]. One finds

SRPA(k) =
�k2

2mωp
, k � kF , (69)

where ωp =
√

4πne2/m is the plasmon frequency [33].
This is also known as the second-moment sum rule for the
exact RDF and can be rewritten as: n

∫
dr r2[g(r) − 1] =

−6(�/2mωp). We can then say that g(r) − 1 has to de-
cay faster than r−5 at large r. The fourth-moment (or
compressibility) sum rule links the thermodynamic com-
pressibility, χ = [nd(n2de0/dn)/dn]−1 [61], to the fourth-
moment of the RDF. For the equivalent classical system it
is well-known that the correlation functions have to decay
faster than any inverse power of the distance [53,62,63] (in
accord with the Debye-Hükel theory). We are not aware of
the existence of a similar result for the zero temperature
quantum case.

8 Results of the calculation

We considered fourty systems corresponding to rs =
1, 2, 5, 10, μ = ∞, 4, 2, 1, 1/2, ζ = 0, 1. For each system
we calculated the RDF using the histogram estimator in
a variational, mixed, and extrapolated measure and a par-
ticular HFM measure. Before starting with the simulations
we determined the optimal values for the time step τ and
the number of walkers nw for each density.

8.1 Extrapolations

For the Coulomb case, μ → ∞, we made extrapolations
in time step τ and number of walkers nw for each value of
rs within our DMC simulations. Given a relative precision
δe0 = Δe0/ex

p, where e0 = 〈EL〉f/N , Δe0 is the statistical
error on e0, and ex

p is the exchange energy per particle
(see Eq. (55)), we set as our target relative precision δe0 =
10−2%.

8.1.1 In time step

Our results are summarized in Table 2. As the characteris-
tic dimension of one particle diffusing walk is σ =

√
2λτ or√

2τ/r2
s in adimensional units, this has to remain of the

order of the mean nearest neighbor separation a which
is chosen to be a constant in our units. Then we expect
that at lower rs one needs to choose smaller time steps
τ . For this reason we chose different time steps in the
simulations of the table: τ = 0.5, 0.1, 0.05 for rs = 10,
τ = 0.3, 0.1, 0.05 for rs = 5, τ = 0.05, 0.03, 0.005 for
rs = 2, and τ = 0.01, 0.005, 0.001 for rs = 1. Note that,
at fixed rs, the statistical errors increase as the time step
diminishes.

Table 2. Extrapolation in time step for N = 66 unpolarized
electrons (μ = ∞) at a fixed number of nw = 600 walkers with
a trial wavefunction of the SJ type. We run the simulation for
3 different time steps and did a linear fit of the (τ, e0) data,
e0 = a + bτ . The optimal τ is the largest one compatible with
the target precision.

rs a b χ2 Optimal τ

10 –0.107456(7) 0.00010(2) 0.9 0.09
5 –0.153352(4) 0.00024(3) 0.1 0.07
2 –0.00416(8) 0.003(2) 4.4 0.01
1 1.14579(7) 0.032(9) 1.1 0.003

Table 3. Extrapolation in number of walkers for N = 66 un-
polarized electrons (μ = ∞) with a time step τ = 0.1 for
rs = 10, 5, τ = 0.05 for rs = 2, and τ = 0.01 for rs = 1 with
a trial wavefunction of the SJ type. We run the simulation
for 4 different numbers of walkers and did a linear fit of the
(1/nw , e0) data, e0 = a+ b/nw. The optimal nw is the smallest
one compatible with the target precision.

rs a b χ2 optimal nw

10 –0.107443(3) 0.0032(4) 0.1 354
5 –0.153329(6) 0.0044(7) 0.2 243
2 –0.004036(6) 0.0026(7) 0.2 56
1 1.14609(6) 0.01(1) 1.2 40
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Fig. 2. The mixed measure of the RDF calculated in DMC
for N = 162, ζ = 0, μ = ∞, rs = 10 with a S, SJ, SJ+ BF + 3B
trial wavefunction.

8.1.2 In the number of walkers

Our results are summarized in Table 3. The fluctuations
of the statistical weight of a walker depend on the fluctu-
ations of the local energy, i.e. by the quality of the trial
wavefunction. The quality of the trial wavefunction wors-
ens as rs becomes larger (for the strongly correlated sys-
tem), and one expects that the necessary number of walk-
ers increases. This is in agreement with the results of the
table. Note that, at fixed rs, the statistical errors increase
as the number of walkers diminishes.

8.2 Effect of backflow and three-body correlations

In Figure 2, we show the mixed measure of the RDF cal-
culated in DMC for N = 162, ζ = 0, μ = ∞, rs = 10
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Fig. 3. The difference between the RDF calculated with the SJ wavefunction and the one calculated with the SJ+ BF + 3B
wavefunction using the variational, the mixed, and the extrapolated measure. The results are for N = 162, ζ = 0, μ = ∞. On
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Fig. 4. The difference between the RDF of two systems of electrons (μ = ∞) at rs = 10 and ζ = 0 with different sizes N1 and
N2. The RDF are calculated in VMC with the SJ wavefunction. On the left, the difference of the like RDF is shown and on the
right, the difference of the unlike RDF is shown.

with different kinds of trial wavefunctions. Of course in a
VMC calculation using the Slater determinant wavefunc-
tion gives us gx

σ,σ′ , the RDF of the ideal gas (see Eqs. (59)
and (60)).

In Figure 3, we show the difference between the RDF
calculated with the SJ wavefunction and the one calcu-
lated with the SJ +BF + 3B wavefunction using the vari-
ational, the mixed, and the extrapolated measure.

With the extrapolated measure the results from the
SJ computation differs by less than 0.005 from the ones
from the SJ+ BF +3B. We then decided to perform our
subsequent calculations using the SJ trial wavefunction.

8.3 Size effects

In order to estimate the size effects on the RDF calcula-
tion, we performed a series of VMC calculation with the
SJ wavefunction on an unpolarized system with different
number of particles. The results (see Fig. 4) show that the

size dependence mainly affects the long range behavior of
the RDF and the on-top value for the unlike one.

In the simulation the RDF is defined on r ∈ [0, rmax]
with rmax = L/2, where L = Ω1/3 = (4πN/3)1/3 is the
size of the simulation box. To minimize size effects we
chose to perform our RDF calculation with N = 162 in
the unpolarized case and N = 147 in the polarized case.

8.4 The HFM measure

From the definition (49), we can write the RDF as:

gσ,σ′(r) =
〈Iσ,σ′(r,R)〉

Ωnσnσ′
. (70)

Since the operator Iσ,σ′ is diagonal in coordinate represen-
tation then Iσ,σ′ = (Iσ,σ′)L. Indicating with Ωr the solid
angle spanned by the r vector, we can write

Iσ,σ′ (r,R) =
∑
i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π
δ(r − rij), (71)
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which is the usual histogram estimator [21]. Follow-
ing Toulouse et al. [15], we choose for Q the following
expression:

Qσ,σ′(r,R) = − r2
s

8π

∑
i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π

1
|r − rij | ,(72)

so that (using the identities∇∇∇2
rij

1/|r−rij| = −4πδ(r−rij)
and ∇∇∇rif(rkj) = ∇∇∇rkj

f(rkj)[δik − δij ], for a given func-
tion f) the first term in equation (25) exactly cancels the
histogram estimator Iσ,σ′ . Then the HFMv estimator is

IHFMv
σ,σ′ (r,R) =

1
2π

∑
i,j �=i

δσ,σiδσ′,σjvi(R) ·
∫

dΩr

4π
∇∇∇rij

× 1
|r − rij |

= − 1
4π

∑
i,j �=i

δσ,σiδσ′,σjvi(R) · rij

r3
ij

× [1 + sgn(rij − r)], (73)

which goes to zero at large r 3. The correct (taking care
of the missing factor of two in Ref. [15]) β correction is

ΔIβ
σ,σ′ (r,R) = −[EL(R) − E0]

r2
s

8π

×
∑
i,j �=i

δσ,σiδσ′,σj

∫
dΩr

4π

1
|r − rij |

= −[EL(R) − E0]
r2
s

16π

×
∑
i,j �=i

δσ,σiδσ′,σj

(
rij + r − |rij − r|

rijr

)
.

(74)

Note that also 〈ΔIβ
σ,σ′ (r,R)〉 goes to zero at large r. This

particular HFM measure needs to be shifted gσ,σ′(r) =
gHFM

σ,σ′ (r) + 1. We chose to do the shift as follows:

gσ,σ′(r) = gHFM
σ,σ′ (r) + gmix

σ,σ′(L/2)− gHFM
σ,σ′ (L/2).

Nonetheless it is expected to give better results for the
on-top value of the RDF where the histogram estimator
of equation (49), after the necessary discretization of the
Dirac delta function, leads, in the measure, to a statisti-
cal average divided by zero. Moreover it does not suffer
from any discretization error and can be calculated for
any value of r.

In Figure 5, we show a comparison for the RDF of the
N = 162, ζ = 0, μ = ∞, rs = 10 system, calculated in
DMC SJ with various kinds of measures. The length of

3 Note that with the given choice of Q we obtain
〈ΔIα

σ,σ′(r,R)〉Ψ2 = − ∫
∂ΩN Ψ2(R)∇∇∇Qσ,σ′(r,R) · dS/r2

s =
−Ωnσnσ′ , for all r with r ∈ Ω, instead of zero as normally
expected. This is ultimately related to the behavior of the aux-
iliary function Ψ ′ = QΨ on the border of ΩN .
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Fig. 5. The RDF of the N = 162, ζ = 0, μ = ∞, rs = 10
system, calculated in DMC SJ with various kinds of measures:
mixed histogram (mixed), extrapolated histogram (extrapo-
lated), and HFM (HF) with the choice of equation (72).

the run was always the same 50 blocks of 500 steps each.
From the figure one can see that with our choice of the β
correction the HFM measure has the correct average value
(coinciding with the usual histogram estimator). From the
figure it is also evident that the HFM measure is much less
efficient than the other measures (clearly with a sufficient
number of blocks the statistical error on the HFM measure
can be made small at will).

This inefficiency is entirely due to the ZB correction
(essential in the DMC calculation). From its definition (see
Eq. (74)) one can see that it is the small difference of two
large terms involving the (extensive) total energy . So the
statistical error on the HFM measure is completely dom-
inated by that of the β part, the α part having statistical
errors comparable with the ones of the usual histogram
estimator, as shown in the left panel of Figure 6.

8.5 Choice of the Jastrow

We noticed that at small rs, μ, and r the variational mea-
sure for the unlike RDF, with the chosen Jastrow J1 of
equation (36), deviates strongly from the mixed one. This
is no longer so with the modified Jastrow J2 of equa-
tion (39), which at small μ gives also better variational
energies (but not for μ → ∞ where J1 is better. Note
that the Jastrow factor does not change the nodes of the
wavefunction so the energies calculated from the diffusion
with J1 or J2 coincide). The extrapolated measures do
not change appreciably in the two cases apart from near
r = 0. In Figure 6 we show the difference for the two cal-
culations with J1 and J2 for the ζ = 0, rs = 1, μ = 1
model. From the inset in the left panel, we can see that
among the two extrapolated measures there is a difference
of the order of 0.005.

Our results with the two Jastrow factors show that J1

is better than J2 for the near-Jellium systems (μ large)
while J2 is better than J1 for the near-ideal systems (μ
small).
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Fig. 6. Unlike RDF for the unpolarized fluid of Paziani et al. [10] at rs = 1 and μ = 1 with N = 162. On the left, the calculation
with the Jastrow J1 of equation (36) with various measures: variational histogram (variational) and variational HFMv (HFMv)
using the estimator of equation (73), mixed histogram (mixed) and HFM (HFM), and extrapolated histogram (extrapolated).
On the right, the calculation with the Jastrow J2 of equation (39) with the histogram variational (variational), mixed (mixed),
and extrapolated (extrapolated) measures. In the inset is shown the difference between the histogram extrapolated measure of
the calculation with J1 and the histogram extrapolated measure of the calculation with J2. 105 Monte Carlo steps were used
in the simulations.

8.6 The histogram estimator

In Figure 7, we show the DMC results for the histogram
extrapolated measure of the RDF of our fluid model at
ζ = 0. The time step, τ , and number of walkers, nw, were
chosen according to the indications given in Section 8.1.
Figure 8 is for the ζ = 1 case.

In Table 4, we show the on-top values for the unlike
RDF, g+−(0), of the unpolarized system, calculated with
the histogram variational, the histogram mixed, the his-
togram extrapolated measure, the HFM measure, and the
HFM extrapolated measure (of Eq. (24)).

9 Conclusions

We studied through variational and diffusion Monte Carlo
techniques the fluid of spin one-half particles interact-
ing with the bare pair-potential vμ(r) = erf(μr)/r and
immersed in a uniform counteracting background. When
μ → ∞ the system reduces to the Jellium model whereas
when μ → 0 it reduces to the ideal Fermi gas. We per-
formed a detailed analysis of the spin-resolved radial dis-
tribution function for this system as a function of the
density parameter rs = 1, 2, 5, 10 and the penetrability
parameter μ = 1/2, 1, 2, 4,∞ at two values of the polar-
ization, ζ = 0, 1.

Initially we carefully fine tuned our DMC calculation
determining the optimal values for the time step τ and
the number of walkers nw for each value of the density
parameter rs. Increasing the system size N the RDF ex-
tends its range [0, rmax] at larger rmax. We estimated that
for N ≥ 66 the size dependence of the RDF is lower than
2%. As a compromise between computational cost and re-
duction of the size effects, the largest uncontrolled source
of uncertainty on our RDF measurements, we chose to

perform the RDF calculation with N = 162 in the unpo-
larized case and N = 147 in the polarized case.

We calculated the RDF using two different routes:
through the usual histogram estimator and through a par-
ticular HFM measure. As expected, in the VMC calcu-
lations the HFMv estimator gives better results for the
on-top value of the RDF. In the DMC calculation the in-
clusion of the β correction (which must be omitted in the
VMC calculation) is indispensable. Moreover, the HFMv
estimator is zero for r > rmax so it has to be shifted by +1.
From our variational and fixed nodes diffusion Monte
Carlo experiments turns out that although in the vari-
ational measure the average of the histogram estimator
agrees with the average of the HFMv estimator within the
square root of the variance of the average σav =

√
σ2K/N ,

where σ2 is the variance, K the correlation time of the ran-
dom walk, and N the number of Monte Carlo steps, and
the two σav are comparable, in the diffusion experiment,
where one has to add the β correction not to bias the aver-
age, the Hellmann and Feynman measure has an average
in agreement with the one of the histogram estimator but
the σav increases. This is to be expected from the extensive
nature of the β correction in which the energy appears. Of
course the averages from the extrapolated Hellmann and
Feynman measure and the extrapolated measure for the
histogram estimator also agree.

In the simulation, for the Coulomb case, μ → ∞, we
made extrapolations in time step and number of walk-
ers for each value of rs. Given a relative precision δe0 =
Δe0/ex

p, where e0 = 〈EL〉f/N , Δe0 is the statistical error
on e0, and ex

p is the exchange energy, we set as our target
relative precision δe0 = 10−2%. The extrapolated values
of the time step and number of walkers was then used for
all other values of μ. We chose the trial wavefunction of
the Bijl-Dingle-Jastrow [40–42] form as a product of Slater
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Fig. 7. The histogram extrapolated measure for the RDF of a system of 162 unpolarized (ζ = 0) particles calculated using the
SJ trial wavefunction. The VMC calculation was made of 106 steps while the DMC by 105. The trial wavefunction used was of
the SJ type with the Jastrow J1 of equation (36).

determinants and a Jastrow factor. The pseudo potential
was chosen as in reference [46], J2, which is expected to
give better results for Jellium. Comparison with the simu-
lation of the unpolarized fluid at rs = 1 and μ = 1 with the
pseudo potential of reference [47], J1, for which the trial
wavefunction becomes the exact ground state wavefunc-
tion in the μ → 0 limit, show that the two extrapolated
measures of the unlike histogram estimator differ one from
the other by less than 7×10−3, the largest difference being
at contact (see Fig. 1). The use of more sophisticated trial
wavefunctions, taking into account the effect of backflow
and three-body correlations, is found to affect the measure
by even less in the range of densities considered. For the
same reason we discarded the use of the twist-averaged
boundary conditions [16] and only worked with periodic
boundary conditions. In Table 4, we compare the contact
values of the unlike RDF of the unpolarized fluid at vari-
ous rs and μ from the measures of the histogram estimator
and the HFM measures. We see that there is disagreement
between the measure from the histogram estimator and

the HFM measure only in the Coulomb μ → ∞ case at
rs = 1, 2.

Our results complement the ones of Paziani et al. [10],
which only reported a limited number of RDF data. We
plan, in the future, to complete the calculation at interme-
diate polarizations, 0 < ζ < 1, complementing the work
of Ortiz and Ballone [64], and Kwon et al. [14].

We believe it is still an open problem the one of deter-
mining the relationship between the choice of the auxil-
iary function, the bias it introduces in the Hellmann and
Feynman measure, and the variance of this measure.

Appendix A: Jastrow, backflow,
and three-body

In terms of the stochastic process governed by f(R, t) one
can write, using Kac theorem [65,66]:∫

dR f(R, τ) =
〈

exp
[
−
∫ τ

0

dt EL(Rt)
]〉

DRW

, (A.1)
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Fig. 8. The histogram extrapolated measure for the RDF of a system of 147 fully polarized (ζ = 1) particles calculated using
the SJ trial wavefunction. The VMC calculation was made of 106 steps while the DMC by 105. The trial wavefunction used was
of the SJ type with the Jastrow J1 of equation (36).

where 〈. . .〉DRW means averaging with respect to the dif-
fusing and drifting random walk. Choosing a complete set
of orthonormal wavefunctions Ψi, we can write for the true
time dependent many-body wavefunction:

φ(R, τ) =
∑

i

Ψi(R)
∫

dR′Ψi(R′)φ(R′, τ)

≈ Ψ(R)
∫

dR f(R, τ)

= Ψ(R)
〈

exp
[
−
∫ τ

0

dt EL(Rt)
]〉

DRW

,

(A.2)

where Ψ is the wavefunction, of the set, of maximum
overlap with the true ground-state, the trial wavefunc-
tion. Assuming that at time zero we are already close
to the stationary solution, for sufficiently small τ we can

approximate〈
exp

[
−
∫ τ

0

dt EL(Rt)
]〉

DRW

≈ e−τEL(Rτ ). (A.3)

By antisymmetrising we get the Fermion wavefunction

φF (R, τ) ≈ A
[
e−τEL(R)Ψ(R)

]
, (A.4)

where given a function f(R), we define the operator (a
symmetry of the Hamiltonian)

A[f(R)] =
1

NP

∑
P

(−1)P f(PR), (A.5)

here NP = N+!N−! is the total number of allowed permu-
tations P .

This is called the local energy method to improve a
trial wavefunction. Suppose we start from a simple un-
symmetrical product of single particle plane waves of N+
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Table 4. Contact values for the unlike RDF of the unpolarized fluid of Paziani et al. [10], at various rs and μ, from the
histogram variational (variational), mixed (mixed), and extrapolated (extrapolated) measures, and the HFM (HFM) and HFM
extrapolated (HFM-ext) measures. The trial wavefunction used was of the SJ type with the Jastrow J1 of equation (36). The

last column gives the error σav =
√

σ2K/N (σ2 is the variance, K the correlation time of the random walk, and N the number
of Monte Carlo steps) on the HFM measure. 162 particles were used with 105 × nw Monte Carlo steps.

rs μ Variational Mixed Extrapolated HFM HFM-ext σav on HFM
10 1/2 1.085(8) 1.000(4) 0.91(1) 1.0006 0.9222 0.03
10 1 0.706(6) 0.644(3) 0.582(8) 0.6474 0.5949 0.03
10 2 0.219(4) 0.182(1) 0.146(4) 0.1798 0.1450 0.06
10 4 0.053(2) 0.0506(8) 0.048(2) 0.0460 0.0394 0.07
10 ∞ 0.0074(6) 0.0096(3) 0.0118(8) 0.0045 0.0029 0.09
5 1/2 1.129(8) 1.034(3) 0.94(1) 1.0277 0.9381 0.03
5 1 0.850(7) 0.796(3) 0.743(9) 0.7912 0.7325 0.02
5 2 0.448(5) 0.405(2) 0.362(6) 0.4022 0.3565 0.02
5 4 0.214(3) 0.199(1) 0.184(4) 0.1960 0.1782 0.03
5 ∞ 0.080(2) 0.0799(8) 0.080(2) 0.0625 0.0557 0.03
2 1/2 1.158(8) 1.0618(4) 0.97(1) 1.0545 0.9484 0.04
2 1 1.003(8) 0.927(3) 0.852(9) 0.9270 0.8561 0.03
2 2 0.754(7) 0.697(3) 0.639(9) 0.6919 0.6299 0.02
2 4 0.549(6) 0.511(2) 0.473(7) 0.5127 0.4687 0.02
2 ∞ 0.376(4) 0.349(2) 0.323(5) 0.3236 0.3030 0.02
1 1/2 1.171(8) 1.077(3) 0.98(1) 1.0705 0.9683 0.02
1 1 1.077(8) 0.994(3) 0.91(1) 0.9938 0.9070 0.02
1 2 0.924(8) 0.855(3) 0.787(9) 0.8640 0.8053 0.02
1 4 0.784(7) 0.730(2) 0.676(8) 0.7295 0.6628 0.01
1 ∞ 0.645(6) 0.602(2) 0.560(7) 0.5771 0.5263 0.01

spin-up particles with k < k+
F occupied and N− spin-up

particles with k < k−
F occupied, for the zeroth order trial

wavefunction. Equation (A.4) will give us a first order
wavefunction of the Slater-Jastrow type (see Eq. (27)).
If we start from an unsymmetrical Hartree-Jastrow trial
wavefunction the local energy with the Jastrow factor has
the form

EL = V − λ
∑

i

⎡
⎣−k2

i − 2iki · ∇∇∇i

∑
j<k

u(rjk)

−∇∇∇2
i

∑
j<k

u(rjk) +

∣∣∣∣∣∣∇∇∇i

∑
j<k

u(rjk)

∣∣∣∣∣∣
2
⎤
⎥⎦, (A.6)

where V = V (R) is the total potential energy and rij =
|rij | = |ri − rj |. Then the antisymmetrized second order
wavefunction has the form in equation (40), which includes
backflow (see the third term), which is the correction in-
side the determinant and which affects the nodes, and
three-body boson-like correlations (see last term) which
do not affect the nodes.

The MC simulations presented were carried out at the Center
for High Performance Computing (CHPC), CSIR Campus, 15
Lower Hope St., Rosebank, Cape Town, South Africa.
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