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Abstract

Covariant scalar field quantizations will be called (¢"),, where r denotes the power of the interaction term and n = s + 1, where s is
the spatial dimension and 1 adds time. Models where r < 2n/(n — 2) can be treated by canonical quantization, while models where
r > 2n/(n — 2) are trivial or, if treated as a unit, emerge as ‘free theories’. Moreover, according to canonical quantization, models where
r=2n/(n—2),e.g., r = n = 4, also become ‘free theories’, which must be considered quantum failures. However, there exists a different
approach called affine quantization. This approach promotes a different set of classical variables to become the basic quantum operators
and offers different results. It is well known that the canonical quantization of o} fails. This article addresses this failure alongside

solutions to other problems.
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1. Introduction

There are many models with the same ‘/llness’ as that of o} [1—-12].
The secret to a valid canonical quantization (CQ) is remarkably
simple. All you need is the addition of a single, fixed potential,
which is not seen in the classical Hamiltonian, but which puts
terms in proper position elsewhere. This single, additional, poten-
tial is 252 /(x)?. This potential can be added to the models for ¢}
and }. The additional potential, put just after #(x)?, is all that is
needed.

2. Results when removing ¢(x) = 0

The special #-term has arisen from the fact that ¢(x) = 0 has
been removed, which means that the momentum is no longer self-
adjoint. The next step introduces &(x) = [7(x)To(x) +o(x)7(x)]/2,
and with scaling, it becomes

2

T(0)? = () /p(x)? = AE)p(x) R (x)
= () +bh?/p(x)?, ®
where the factor b = 2 has been chosen to fix this particular

problem. Observe that choosing ¢(x) # 0 has permitted the
introduction of the ‘polynomial’-like term 272 /¢ (x)2.

2.1. How this scaling functions

Initially, #(x)p(x) " 2&(x) = #% + h25(0)* /p(x)?, where §(0) is
Dirac’s special function. Where §(x) = 0 for all 0 < [x|, while
J8(x) dx = 1 leads to §(0) = oo. Now our oo is reduced to
br*W? < oo, and Wwill be set to oo later on, where Wis a scaling
factor.

This now becomes 7 (x)? +bi2W? /(x)?. Next, (7 (x)? & p(x)?) —
W(#(x)? & @(x)?). This leads to W (x)? + bh?W? /Wp(x)?, and

now a full multiplication by W~ leads to the final result which is
#(x)? + bh? /p(x)?. Now W can be set to co.

3. Selected topics of affine quantization

A major feature of CQ is that —oo < q@ & ¢(x) < oo either in
quantum mechanics where q is position or in scalar field theory
where ¢ (x) is the field. It is this fact which affine quantization (AQ)
overcomes by introducing a variety of parts of incomplete space,
such as these retained spaces, g > 0, |q| > 0, ¢* < b?, ¢*> > b?,
etc. For quantum field theory, the most important change is that
(x) # 0 and that equation has been fully removed.

Note that CQ requires 0 < |p(x)| < oo, while AQ seeks to find
missing equations, which show that a specific field value, namely,
©(x) = 0 is removed [13]; in other words, when 0 < |p(x)| < oco.

3.1. An introduction to affine quantization (AQ)

Only AQ can correctly solve all examples that have missing space
regions and can do so correctly simply with the remaining space
examples.

There is something else that CQ fails on, namely the “Particle in
a Box” example. This example is with missing space and has been
traditionally ‘solved’ using CQ. However, that very model can, and
has, been correctly solved now by using AQ [7].

If you wish to read up on AQ, there are two examples given in
[7, 14], where AQ has been well explained.
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4. Conclusions

There have been many models with the same problems as that
of ¢4 [1—7]. The secret to a valid canonical quantization is re-
markably simple. What is needed is the addition of a single, fixed
potential, which is not seen in other texts, but which puts terms
in proper position elsewhere. This single, additional, potential is
212 /p(x)?, alongside 7 (x)?. It is noteworthy that this potential
forces 0 < |p(x)| < oo, which leads to 0 < |p(x)|" < oo and
guarantees that almost all other potentials remain finite.

That additional potential is all you will need.

This solution is possible due to affine quantization [14, 15].
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